. Scientific Frontline

Wednesday, October 19, 2022

Researchers discover new monster black hole 'practically in our back yard'

Dr. Sukanya Chakrabarti, the Pei-Ling Chan Endowed Chair in the Department of Physics & Astronomy, is the paper’s lead author. 
Credit: Michael Mercier / UAH

The discovery of a so-called monster black hole that has about 12 times the mass of the sun is detailed in a new Astrophysical Journal research submission, the lead author of which is Dr. Sukanya Chakrabarti, a physics professor at The University of Alabama in Huntsville (UAH).

“It is closer to the sun than any other known black hole, at a distance of 1,550 light years,” says Dr. Chakrabarti, the Pei-Ling Chan Endowed Chair in the Department of Physics at UAH, a part of the University of Alabama System. “So, it's practically in our backyard.”

Black holes are seen as exotic because, although their gravitational force is clearly felt by stars and other objects in their vicinity, no light can escape a black hole so they can’t be seen in the same way as visible stars.

“In some cases, like for supermassive black holes at the centers of galaxies, they can drive galaxy formation and evolution,” Dr. Chakrabarti says.

“It is not yet clear how these noninteracting black holes affect galactic dynamics in the Milky Way. If they are numerous, they may well affect the formation of our galaxy and its internal dynamics.”

Physicists confirm hitch in proton structure

The real photon that is produced in the virtual Compton scattering reaction provides electromagnetic perturbation to the proton and allows to measure its electromagnetic generalized polarizabilities.
Image credit: Courtesy of Nikos Sparveris, Temple University

Nuclear physicists have confirmed that the current description of proton structure isn’t all smooth sailing. A new precision measurement of the proton’s electric polarizability performed at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility has revealed a bump in the data in probes of the proton’s structure. Though widely thought to be a fluke when seen in earlier measurements, this new, more precise measurement has confirmed the presence of the anomaly and raises questions about its origin. The research has just been published in the journal Nature.

According to Ruonan Li, first author on the new paper and a graduate student at Temple University, measurements of the proton’s electric polarizability reveal how susceptible the proton is to deformation, or stretching, in an electric field. Like size or charge, electric polarizability is a fundamental property of proton structure.

What’s more, a precision determination of the proton’s electric polarizability can help bridge the different descriptions of the proton. Depending on how it is probed, a proton may appear as an opaque single particle or as a composite particle made of three quarks held together by the strong force.

Ecological imbalance: How plant diversity in Germany has changed in the past century

The cornflower is one of the "losers", its population has declined sharply over the past 100 years.
Photo Credit: André Künzelmann / UFZ

Germany's plant world has seen a greater number of losers than winners over the past one hundred years. While the frequencies and abundances of many species have shrunk, they have significantly increased in others. This has resulted in a very uneven distribution of gains and losses. It indicates an overall, large-scale loss of biodiversity, as a team lead by the Martin Luther University Halle-Wittenberg (MLU) and the German Centre for Integrative Biodiversity Research (iDiv) reports in the journal Nature.

It’s a weird paradox: While global biodiversity is lost at an alarming rate, at the local level, many studies are finding no significant decreases in animal and plant species numbers. "However, this doesn’t mean that the developments are not worrying," warns Professor Helge Bruelheide, an ecologist at MLU. After all, it also depends on which species we are talking about. For example, if survival artists that are specially adapted to peatlands or dry grasslands are displaced by common plants, the number of species often remains, in total, the same. However, diversity is still being lost because the once very distinct vegetation of different habitats is now becoming more and more similar.

To find out how strong this trend is in Germany, the team led by MLU looked at a multitude of local studies. Numerous experts provided data from more than 7,700 plots whose plant populations had been surveyed several times between 1927 and 2020. These studies, some of which have not been published before, cover a wide range of habitats and provide information on nearly 1,800 plant species. This includes about half of all the vascular plant species that grow in Germany. "Such time series can provide very valuable information," explains Dr Ute Jandt from MLU. This is because very precise botanical censuses can be conducted in plots that are often only ten or twenty square meters in size. ": It is highly unlikely that plants disappear or reappear unnoticed in such plots," Jandt adds.

Methane-Eating ‘Borgs’ Have Been Assimilating Earth’s Microbes

A digital illustration inspired by methane-eating archaea and the Borgs that assimilate them
Credit: Jenny Nuss/Berkeley Lab

In Star Trek, the Borg are a ruthless, hive-minded collective that assimilate other beings with the intent of taking over the galaxy. Here on nonfictional planet Earth, Borgs are DNA packages that could help humans fight climate change.

Last year, a team led by Jill Banfield discovered DNA structures within a methane-consuming microbe called Methanoperedens that appear to supercharge the organism’s metabolic rate. They named the genetic elements “Borgs” because the DNA within them contains genes assimilated from many organisms. In a study published today as the cover item in the journal Nature, the researchers describe the curious collection of genes within Borgs and begin to investigate the role these DNA packages play in environmental processes, such as carbon cycling.

First contact

Methanoperedens are a type of archaea (unicellular organisms that resemble bacteria but represent a distinct branch of life) that break down methane (CH4) in soils, groundwater, and the atmosphere to support cellular metabolism. Methanoperedens and other methane-consuming microbes live in diverse ecosystems around the world but are believed to be less common than microbes that use photosynthesis, oxygen, or fermentation for energy. Yet they play an outsized role in Earth system processes by removing methane – the most potent greenhouse gas – from the atmosphere. Methane traps 30 times more heat than carbon dioxide and is estimated to account for about 30 percent of human-driven global warming. The gas is emitted naturally through geological processes and by methane-generating archaea; however, industrial processes are releasing stored methane back into the atmosphere in worrying quantities.

Hands in people with diabetes more often affected by trigger finger

Mattias Rydberg, doctoral student at Lund University and resident physician at Skåne University Hospital
Source: Lund University

Locked fingers, known as trigger finger, are more common among people with diabetes than in the general population. A study led by Lund University in Sweden shows that the risk of being affected increases in the case of high blood sugar. The study has been published in Diabetes Care.

Trigger finger means that one or more fingers, often the ring finger or thumb, ends up in a bent position that is difficult to straighten out. It is due to the thickening of tendons, which bend the finger, and their connective tissue sheath, which means that the finger becomes fixed in a bent position towards the palm. It is a painful condition that can often be treated with cortisone injections, but sometimes requires surgery.

“At the hand surgery clinic, we have noted for a long time that people with diabetes, both type 1 and type 2, are more often affected by trigger finger. Over 20 percent of those who require surgery for this condition are patients who have, or will develop, diabetes,” says Mattias Rydberg, doctoral student at Lund University, resident physician at Skåne University Hospital and first author of the study.

To study whether high blood sugar (blood sugar dysregulation) increases the risk of trigger finger, the researchers examined two registers: Region Skåne’s healthcare database, which includes all diagnoses, and the Swedish national diabetes register. Between 1 and 1.5 per cent of the population are affected by trigger finger, but the diagnosis arises among 10-15 per cent of those who have diabetes, and the phenomenon appears most in the group with type 1 diabetes.

The Most Precise Accounting Yet of Dark Energy and Dark Matter

G299 was left over by a particular class of supernovas called Type Ia. 
Credit: NASA/CXC/U.Texas

 Astrophysicists have performed a powerful new analysis that places the most precise limits yet on the composition and evolution of the universe. With this analysis, dubbed Pantheon+, cosmologists find themselves at a crossroads.

Pantheon+ convincingly finds that the cosmos is composed of about two-thirds dark energy and one-third matter — mostly in the form of dark matter — and is expanding at an accelerating pace over the last several billion years. However, Pantheon+ also cements a major disagreement over the pace of that expansion that has yet to be solved.

By putting prevailing modern cosmological theories, known as the Standard Model of Cosmology, on even firmer evidentiary and statistical footing, Pantheon+ further closes the door on alternative frameworks accounting for dark energy and dark matter. Both are bedrocks of the Standard Model of Cosmology but have yet to be directly detected and rank among the model's biggest mysteries. Following through on the results of Pantheon+, researchers can now pursue more precise observational tests and hone explanations for the ostensible cosmos.

"With these Pantheon+ results, we are able to put the most precise constraints on the dynamics and history of the universe to date," says Dillon Brout, an Einstein Fellow at the Center for Astrophysics | Harvard & Smithsonian. "We've combed over the data and can now say with more confidence than ever before how the universe has evolved over the eons and that the current best theories for dark energy and dark matter hold strong."

Forgetting is natural, but learning how to learn can slow it down

Students studying at Iowa State University.
Credit: Christopher Gannon/Iowa State University

Whether you’re trying to ace a test or pick up a new hobby, Iowa State Psychology Professor Shana Carpenter says combining two strategies – spacing and retrieval practice – is key to success.

Carpenter is the lead author of a paper in Nature Reviews Psychology that examined more than 100 years of research on learning.

“The benefits of spacing and retrieval practice have been confirmed over and over in studies in labs, classrooms, workplaces, but the reason why we’re showcasing this research is because these two techniques haven’t fully caught on. If they were utilized all the time, we’d see drastic increases in learning,” said Carpenter.

In the paper, Carpenter and her co-authors describe spacing as a strategy to learn in small doses over time. It’s the opposite of cramming the night before an exam. In one study, medical students who received repeated surgery training over three weeks performed better and faster on tests 2 weeks and 1 year later compared to medical students who had the same training all on one day.

Carpenter says there isn’t a universal rule about how much time to schedule between practice sessions. But research shows returning to the material after forgetting some – but not all – of the content is effective.

Covid-19 is linked to increased degradation of connections between nerve cells in a new brain model

Postdoctoral fellow Samudyata and doctoral student Susmita Malwade.
Source: Karolinska Institutet

Researchers at Karolinska Institutet have used cellular reprogramming in a new study to create human three-dimensional brain models and infected them with SARS-CoV-2. In infected models, the brain's immune cells showed an excessive elimination of connections between the nerve cells. The gene expression of these cells also mimicked changes observed in neurodegenerative diseases. The results hope to identify new treatments for cognitive symptoms after Covid-19 infection.

Several studies have reported persistent cognitive symptoms following a covid-19 infection, but the underlying mechanisms for this are still unknown. The researchers behind the study, published in the journal Molecular Psychiatry, have created from human induced pluripotent stem cells (iPS) three-dimensional models of the brain in test tubes, so-called brain organoids. The model differs from previous organoid models in that they also contain microglia - the brain's immune cells. In the infected models, microglia regulated genes involved in phagocytosis, "cell-eating," the researchers could also see how microglia contained an increased amount of proteins from brain cell connections, so-called synapses. The developed model and results of the study can help guide future efforts to address cognitive symptoms in the aftermath of COVID-19 and other neuroinvasive viral infections.

Electric discharges on leaves during thunderstorms may impact nearby air quality

Weak electrical discharges, called corona, can form on tree leaves during thunderstorms
Credit: Pennsylvania State University

When thunderstorms rumble overhead, weak electrical discharges — called corona — can occur on tree leaves. A new study found coronas create large amounts of atmospheric chemicals that could impact air quality around forests, according to a team of Penn State scientists.

“While little is known about how widespread these discharges are, we estimate that coronas generated on trees under thunderstorms could have substantial impacts on the surrounding air,” said Jena Jenkins, a postdoctoral scholar in the Department of Meteorology and Atmospheric Science at Penn State.

Conditions during thunderstorms that produce lightning also create electric fields between clouds and the ground. Tall, sharply pointed objects, like leaves high in trees, enhance the electric field even further, and can lead to electrical breakdowns — or coronas, the scientists said.

“There are about two trillion trees in areas where thunderstorms are most likely to occur globally and there are 1,800 thunderstorms going on at any given time,” Jenkins said. “This is definitely a process that’s going on all the time and based on the calculations we’ve been able to do so far, we think this can affect air quality in and around forests and trees.”

Model calculates the energetics of piercing fangs, claws and other biological weapons

A new model can be used to calculate the forces involved when one organism stabs another with its puncturing tools. Pictured: A viper skull.
Photo by L. Brian Stauffer

Researchers have created a model that can calculate the energetics involved when one organism stabs another with its fangs, thorns, spines or other puncturing parts. Because the model can be applied to a variety of organisms, it will help scientists study and compare many types of biological puncturing tools, researchers said. It also will help engineers develop new systems to efficiently pierce materials or resist being pierced.

The new findings are reported in the Journal of the Royal Society Interface.

“The idea behind this was to come up with a quantitative framework for comparing a variety of biological puncture systems with each other,” said Philip Anderson, a University of Illinois Urbana-Champaign professor of evolution, ecology and behavior who led the research with postdoctoral researcher Bingyang Zhang. “An initial question of this research was how do we even measure these different systems to make them comparable.”

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles