. Scientific Frontline

Monday, December 5, 2022

Measuring times in billionths of a billionth of a second

Explanation by Prof Igor Litvinyuk and Prof Robert Sang. 
Video Credit: Griffith University

How fast do electrons inside a molecule move? Well, it is so fast that it takes them just a few attoseconds (1 as = 10-18 s or one billionth of billionth of a second) to jump from one atom to another. Blink and you missed it – millions of billions of times. So, measuring such ultrafast processes is a daunting task.

Scientists at the Australian Attosecond Science Facility and the Centre for Quantum Dynamics of Griffith University in Brisbane Australia, led by Professor Robert Sang and Professor Igor Litvinyuk have developed a novel interferometric technique capable of measuring time delays with zeptosecond (a trillionth of a billionth of a second) resolution.

They have used this technique to measure the time delay between extreme ultraviolet light pulses emitted by two different isotopes of hydrogen molecules – H2 and D2 – interacting with intense infrared laser pulses.

This delay was found to be less than three attoseconds (one quintillionth of a second long) and is caused by slightly different motions of the lighter and heavier nuclei.

This study has been published in Ultrafast Science, a new Science Partner Journal.

Business Professors Solve Century-old Math Problem

Illustration Credit: Yesenia Carrero /UConn

These professors made a ridiculously hard logistics problem easy to solve. In the process, they smashed a basic tenet of computer theory. And now they’re offering a $10,000 prize to anyone who can show they’re wrong.

“You have many choices to make. What’s your best choice, given limited resources, to maximize your profit?” asks Moustapha Diaby, an associate professor of operations management in UConn’s School of Business.

It may be the basic question of life in a capitalist society. It’s also the basic question behind operations research, a field of study that blossomed in the 1940s. One of operations research’s basic insights is that linear programming, which is part of a broader technique called “constrained optimization,” can answer these common business questions, says Diaby.

Imagine, for example, that you run an oil refinery. You need to decide how much gasoline (g) and diesel fuel (d) to make from each barrel of oil in order to maximize your profit. If you make a $3 profit per gallon of gas, and $5 per gallon of diesel, the objective of the optimization problem would be to maximize 3g + 5d.

Ural Chemists Improved Material for Fuel Cells

Scientists were able to identify the optimal amount of iron administered.
Photo Credit: Ilya Safarov

Chemists at Ural Federal University and the Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences have improved a material for high-performance electrochemical devices. Such materials are used as electrodes in solid oxide fuel cells (SOFC) or proton-ceramic fuel cells (PCFC). Scientists proposed the infiltration method as a simple and affordable way to improve electrochemical performance. Their method increased the conductivity of this material, consequently improving the performance (increased power) of fuel cells. The change now makes the reaction go faster. The material and method are described in the journal Catalysts.

In the course of their research, chemists introduced iron into the basic barium cerate-zirconate, which means that they added iron ions to the complex oxide perovskites. In this way they were able to obtain a high level of mixed ion-electron conductivity, which is necessary for good electrodes. Similar materials exist today, but scientists around the world are trying to optimize them-improving their properties to increase efficiency.

New findings on neuronal activities in the sensorimotor cortex

Neurons from layer 5 of the motor cortex stained with a fluorescent dye.
Image Credit: Ilka Diester

An interdisciplinary research team at the University of Freiburg has found important clues about the functioning of the sensorimotor cortex. The new findings on neuronal activities in this brain area could be helpful for the further development and use of so-called neuroprostheses. These have an interface with the nervous system and are intended to help compensate for neuronal dysfunctions. "Our results will contribute to the improvement of neuroprosthetic approaches while shortening the training period of patients with prostheses,” says neurobiologist Prof. Dr. Ilka Diester from the Faculty of Biology at the University of Freiburg. The results have just been published in the journal Nature Communications.

Understanding the brain under more natural conditions

The research project also involved the working groups of computer scientist Prof. Dr. Thomas Brox from the University of Freiburg and neuroscientist Prof. Dr. Daniel Durstewitz from the Central Institute of Mental Health in Mannheim. The team found evidence of conserved structures of neuronal activity in the sensorimotor cortex of freely moving rats. The electrophysiological recordings across the entire bilateral sensorimotor cortex allow conclusions about the respective contributions of the premotor, motor and sensory areas. In particular, the researchers found a clear gradient for a contralateral bias, i.e. for movements of the opposite half of the body, from anterior to posterior regions.

Post-lockdown auto emissions can’t hide in the grass

Polluting clouds of exhaust fumes rise in the air.
Photo Credit: Gerd Altmann

University of California scientists have a new way to demonstrate which neighborhoods returned to pre-pandemic levels of air pollution after COVID restrictions ended.

Vehicle emissions are the biggest source of carbon dioxide in Southern California’s air. As people drove their cars far less in 2020 compared to 2019 due to the pandemic, there was a major drop in CO2 on regional highways. A new study published in AGU Advances using a mobile laboratory shows the CO2 drop was roughly 60%.

By analyzing grass samples from across the state, the same study also showed in fine detail that some parts of California were back to high levels of emissions by 2021, while others — generally in more affluent areas — were not.

“Community scientists sent us hundreds of wild grass samples. We analyzed them for radiocarbon content, which is a proxy for fossil fuel emissions,” said Francesca Hopkins, UC Riverside assistant professor of climate change and study co-author.

Consortium develops sustainable aircraft engines

Flying without pollutant emissions should be possible in the future.
Photo Credit: RUB, Marquard

A new drive technology should make air travel possible with a clear conscience.

In the face of climate change, many people get on the plane with a guilty conscience: the emission of climate-damaging carbon dioxide from the combustion of fossil fuels is high. An international consortium wants to change this: The aim of the "MYTHOS" project is to develop aircraft engines that can flexibly use various sustainably produced fuels up to pure hydrogen. The project called "Medium-range hybrid low-pollution flexi-fuel / hydrogen sustainable engine" will start from 1. January 2023 funded by the European Union for four years. The coordination is carried out by Prof. Dr. Francesca di Mare, holder of the professorship for thermal turbo machines and aircraft engines of the RUB.

The overarching goal to which the project team is committed is nothing less than the decarbonization of aviation. "We will be developing and demonstrating a groundbreaking design methodology for future short and medium-range civil engines that can use a wide range of liquid and gaseous fuels and ultimately pure hydrogen," said Francesca di Mare. The fuels for which the engines are to be designed include so-called Sustainable Aviation Fuels, or SAF for short: sustainably produced fuels that are not based on fossil fuels. In order to achieve these goals, the MYTHOS consortium develops a multidisciplinary modeling approach for the characterization of the relevant engine components and uses methods of machine learning.

Checking blood pressure in a heartbeat, using artificial intelligence and a camera

The new technology demonstrates how a camera and artificial intelligence can be used to extract cardiac signals from a person's forehead.
Photo Credit:  University of South Australia

Monitoring blood pressure using a digital camera could soon be the norm, thanks to an innovative technique demonstrated by Australian and Iraqi researchers.

Using the same remote-health technology they pioneered to monitor vital health signs from a distance, engineers from the University of South Australia and Baghdad’s Middle Technical University have designed a non-contact system to accurately measure systolic and diastolic pressure.

The researchers claim that it could replace the existing uncomfortable and cumbersome method of strapping an inflatable cuff to a patient’s arm or wrist, the researchers claim.

In a new paper published in Inventions, the researchers describe the technique, which involves filming a person from a short distance for 10 seconds and extracting cardiac signals from two regions in the forehead, using artificial intelligence algorithms.

The systolic and diastolic readings were around 90 per cent accurate, compared to the existing instrument (a digital sphygmomanometer) used to measure blood pressure, that is itself subject to errors.

Researchers developed a new cancer testing method that makes regular monitoring affordable

Asst Prof Cheow Lih Feng (right), his former PhD student Dr Elsie Cheruba (left) and their team have developed the Heatrich-BS assay, an affordable and highly sensitive blood test for cancer. This new testing method has strong potential to be used in regular cancer monitoring.
Photo Credit: National University of Singapore

The S$50 blood test has high sensitivity, comparable to the gold standard CT scan

Scientists from the National University of (NUS) have discovered a novel low-cost method of testing for cancers. Called the Heatrich-BS assay, this new test sequences clinical samples that have been heated in order to isolate cancer-specific signatures found in a patient’s blood.

The new method provides a promising non-invasive alternative to tissue biopsies. It costs around S$50 from start to finish, compared to other sequencing methods that can cost up to S$1,000 to conduct. Led by Assistant Professor Cheow Lih Feng, the team comprising researchers from the NUS Department of Biomedical Engineering under the College of Design and Engineering as well as the NUS Institute for Health Innovation & Technology, is now exploring industry partnerships to bring their technology to market.

“When you have a S$50 test, it opens up a lot of avenues because it is affordable, so you can do the test quite regularly,” said Asst Prof Cheow, pointing to the potential for their assay to be used in regular cancer monitoring.

Friday, December 2, 2022

You can learn to be fearless

Katharina Spoida (left) and Sandra Süß have examined how the lack of a specific receptor affects the ability to unlearn fear.
Photo Credit: RUB, Marquard

The lack of a specific serotonin receptor helps to unlearn fear faster.

The messenger serotonin plays an important role in the development, but also in the learning of fear and fear. A research team in general zoology and neurobiology around Dr. Katharina Spoida and Dr. Sandra Süß examined in the collaborative research center "Extinction Learning" at the Ruhr University Bochum. The researchers were able to show that mice that lack a certain serotonin receptor unlearn fear much faster than the wild type. The results of the study provide a possible explanation of how drugs for post-traumatic stress disorders (PTSDs) change our brain activity. Those affected often have the ability to unlearn fear, making therapies difficult. The study was carried out on 19. November 2022 published in the journal Translational Psychiatry.

Everyday sensations cause fear

After a traumatic experience, those affected sometimes suffer fear long later, which is caused by certain sensory impressions from our everyday environment and is then overpowering. Post-traumatic stress disorder, or PTSD for short, is what experts call it. In this disorder, it is not or only with difficulty that those affected can unlearn the connection once they have learned between a neutral environmental stimulus and fear, which affects the success of therapies.

Thursday, December 1, 2022

Experimental COVID-19 Vaccine Offers Long-Term Protection Against Severe Disease

A study involving rhesus macaques at the California National Primate Research Center shows that COVID-19 vaccines given to infant animals protect against lung disease one year after vaccination.
 Photo Credit: CNPRC

Two-dose vaccines provide protection against lung disease in rhesus macaques one year after they were vaccinated as infants, a new study shows. The work, published in Science Translational Medicine Dec. 1, is a follow-up to a 2021 studying showing that the Moderna mRNA vaccine and a protein-based vaccine candidate containing an adjuvant, a substance that enhances immune responses, elicited durable neutralizing antibody responses to SARS-CoV-2 during infancy in preclinical research.

The co-senior authors of the paper are Kristina De Paris, professor of microbiology and immunology at the University of North Carolina at Chapel Hill; Sallie Permar, professor and chair of the Department of Pediatrics at Weill Cornell Medicine; and Koen K.A. Van Rompay, leader of the Infectious Disease Unit at the California National Primate Research at the University of California, Davis. Co-first authors are Emma C. Milligan at the Children’s Research Institute, UNC School of Medicine; and Katherine Olstad at the CNPRC.

To evaluate SARS-CoV-2 infant vaccination, the researchers immunized two groups of eight infant rhesus macaques at the CNPRC at 2 months of age and again four weeks later. Each animal received one of two vaccine types: a preclinical version of the Moderna mRNA vaccine or a vaccine combining a protein developed by the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases (NIAID), with a potent adjuvant formulation. Consisting of 3M’s molecular adjuvant 3M-052 formulated in a squalene emulsion by the Access to Advanced Health Institute (AAHI), the adjuvant formulation stimulates immune responses by engaging receptors on immune cells.

Featured Article

Heat extremes in the soil are underestimated

Climate change intensifies extreme heat in the soil. Photo Credit: André Künzelmann (UFZ) For a long time, little attention was paid to soil...

Top Viewed Articles