. Scientific Frontline

Tuesday, December 13, 2022

Scientists get first-ever sound recording of dust devils on Mars

Roger Wiens, a planetary scientist and Mars rover expert at Purdue University, with a topographical model of Mars and a photo of Curiosity.
Photo Credit: John Underwood / Purdue University

When the rover Perseverance landed on Mars, it was equipped with the first working microphone on the planet’s surface. Scientists have used it to make the first-ever audio recording of an extraterrestrial whirlwind.

The study was published in Nature Communications by planetary scientist Naomi Murdoch and a team of researchers at the National Higher French Institute of Aeronautics and Space and NASA. Roger Wiens, professor of earth, atmospheric and planetary sciences in Purdue University’s College of Science, leads the instrument team that made the discovery. He is the principal investigator of Perseverance’s SuperCam, a suite of tools that comprise the rover’s “head” that includes advanced remote-sensing instruments with a wide range of spectrometers, cameras and the microphone.

“We can learn a lot more using sound than we can with some of the other tools,” Wiens said. “They take readings at regular intervals. The microphone lets us sample, not quite at the speed of sound, but nearly 100,000 times a second. It helps us get a stronger sense of what Mars is like.”

Changes in Earth’s orbit may have triggered ancient warming event

Victoria Fortiz (right), then a graduate student at Penn State, and Jean Self-Trail, a research geologist at the U.S. Geological Survey, work on a core sample from the Howards Tract site in Maryland
Photo Credit: Pennsylvania State University

Changes in Earth’s orbit that favored hotter conditions may have helped trigger a rapid global warming event 56 million years ago that is considered an analogue for modern climate change, according to an international team of scientists.

“The Paleocene-Eocene Thermal Maximum is the closest thing we have in the geologic record to anything like what we’re experiencing now and may experience in the future with climate change,” said Lee Kump, professor of geosciences at Penn State. “There has been a lot of interest in better resolving that history, and our work addresses important questions about what triggered the event and the rate of carbon emissions.”

The scientists analyzed core samples from a well-preserved record of the PETM near the Maryland coast using astrochronology, a technique for dating sediments against orbital patterns that occur over tens to hundreds of thousands of years, known as Milankovitch cycles.

They found the shape of Earth’s orbit, or eccentricity, and the wobble in its rotation, or precession, favored hotter conditions at the onset of the PETM and that these orbital configurations together may have played a role in triggering the event.

AI model predicts if a covid-19 test might be positive or not

Xingquan “Hill” Zhu, Ph.D., (left) senior author and a professor; and co-author Magdalyn E. Elkin, a Ph.D. student, both in FAU’s Department of Electrical Engineering and Computer Science.
Photo Credit: Florida Atlantic University

COVID-19 and its latest Omicron strains continue to cause infections across the country as well as globally. Serology (blood) and molecular tests are the two most commonly used methods for rapid COVID-19 testing. Because COVID-19 tests use different mechanisms, they vary significantly. Molecular tests measure the presence of viral SARS-CoV-2 RNA while serology tests detect the presence of antibodies triggered by the SARS-CoV-2 virus.

Currently, there is no existing study on the correlation between serology and molecular tests and which COVID-19 symptoms play a key role in producing a positive test result. A study from Florida Atlantic University ’s College of Engineering and Computer Science using machine learning provides important new evidence in understanding how molecular tests versus serology tests are correlated, and what features are the most useful in distinguishing between COVID-19 positive versus test outcomes.

Researchers from the College of Engineering and Computer Science trained five classification algorithms to predict COVID-19 test results. They created an accurate predictive model using easy-to-obtain symptom features, along with demographic features such as number of days post-symptom onset, fever, temperature, age and gender.

National Ignition Facility achieves fusion ignition

The target chamber of LLNL’s National Ignition Facility, where 192 laser beams delivered more than 2 million joules of ultraviolet energy to a tiny fuel pellet to create fusion ignition on Dec. 5, 2022.
Photo Credit: Lawrence Livermore National Laboratory

The U.S. Department of Energy (DOE) and DOE’s National Nuclear Security Administration (NNSA) today announced the achievement of fusion ignition at Lawrence Livermore National Laboratory (LLNL) — a major scientific breakthrough decades in the making that will pave the way for advancements in national defense and the future of clean power. On Dec. 5, a team at LLNL’s National Ignition Facility (NIF) conducted the first controlled fusion experiment in history to reach this milestone, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it. This first-of-its-kind feat will provide unprecedented capability to support NNSA’s Stockpile Stewardship Program and will provide invaluable insights into the prospects of clean fusion energy, which would be a game-changer for efforts to achieve President Biden’s goal of a net-zero carbon economy.

“This is a landmark achievement for the researchers and staff at the National Ignition Facility who have dedicated their careers to seeing fusion ignition become a reality, and this milestone will undoubtedly spark even more discovery,” said U.S. Secretary of Energy Jennifer M. Granholm. “The Biden-Harris Administration is committed to supporting our world-class scientists — like the team at NIF — whose work will help us solve humanity’s most complex and pressing problems, like providing clean power to combat climate change and maintaining a nuclear deterrent without nuclear testing.”

Methane from manholes and historic landfills: significant sources of gas go unrecognized

Montreal’s municipal greenhouse gas inventory presents an incomplete picture of methane emissions
Photo Credit: Mohammad Rezaie

Cities are responsible for almost 1/5th of the global methane emissions caused by human activities. But most cities don’t capture information about the full range of sources of this powerful greenhouse gas. In 2020, a team led by McGill University, measured methane emissions from various sources across the city of Montreal. The researchers found that two of the four most important sources of methane emissions in the city (historic landfills and manholes) are not included in the city’s municipal greenhouse gas inventories, making it difficult to tackle the problem fully, or reach the city’s goal of being carbon neutral by 2050.

The study provides the first set of direct measurements of methane emissions in Montreal and in the province of Quebec.

The study provides detailed and specific measurements of methane emissions by source – such as the type of manhole or the type of natural gas infrastructure. The results, which highlight the importance of gathering information about the specific sources of methane emissions to set in place mitigation strategies that are adapted to each specific situation should be of interest not only to researchers across Canada and around the world but also to policy makers.

Pollution cleanup method destroys toxic “forever chemicals”

Ultraviolet light used for water treatment 
Photo Credit: UCR/Liu Lab

An insidious category of carcinogenic pollutants known as “forever chemicals” may not be so permanent after all.

University of California, Riverside, chemical engineering and environmental scientists recently published new methods to chemically break up these harmful substances found in drinking water into smaller compounds that are essentially harmless.

The patent-pending process infuses contaminated water with hydrogen, then blasts the water with high-energy, short-wavelength ultraviolet light. The hydrogen polarizes water molecules to make them more reactive, while the light catalyzes chemical reactions that destroy the pollutants, known as PFAS or poly- and per-fluoroalkyl substances.

This one-two punch breaks the strong fluorine-to-carbon chemicals bonds that make these pollutants so persistent and accumulative in the environment. In fact, the molecular destruction of PFAS increased from 10% to nearly 100% when compared to other ultraviolet water-treatment methods, while no other undesirable byproducts or impurities are generated, the UCR scientists reported in a paper recently published in the Journal of Hazardous Materials Letters.

Surveilling carbon sequestration: A smart collar to sense leaks

Sandia National Laboratories’ smart collar detecting a leak from a carbon dioxide storage reservoir.
 Animation Credit: Max Schwaber

Sandia National Laboratories engineers are working on a device that would help ensure captured carbon dioxide stays deep underground — a critical component of carbon sequestration as part of a climate solution.

Carbon sequestration is the process of capturing CO2 — a greenhouse gas that traps heat in the Earth’s atmosphere — from the air or where it is produced and storing it underground. However, there are some technical challenges with carbon sequestration, including making sure that the CO2 remains underground long term. Sandia’s wireless device pairs with tiny sensors to monitor for CO2 leaks and tell above-ground operators if one happens — and it lasts for decades.

“The world is trying a whole lot of different ways to reduce the production of CO2 to mitigate climate change,” said Andrew Wright, Sandia electrical engineer and project lead. “A complementary approach is to reduce the high levels of CO2 in the atmosphere by collecting a good chunk of it and storing it deep underground. The technology we’re developing with the University of Texas at Austin aims to determine whether the CO2 stays down there. What is special about this technology is that we’ll be monitoring it wirelessly and thus won’t create another potential path for leakage like a wire or fiber.”

Good vibrations turbo charge green hydrogen production

PhD researcher Yemima Ehrnst holding the acoustic device the research team used to boost hydrogen production, through electrolysis to split water.
Photo Credit: RMIT University

They say their invention offers a promising way to tap into a plentiful supply of cheap hydrogen fuel for transportation and other sectors, which could radically reduce carbon emissions and help fight climate change.

By using high-frequency vibrations to “divide and conquer” individual water molecules during electrolysis, the team managed to split the water molecules to release 14 times more hydrogen compared with standard electrolysis techniques.

Electrolysis involves electricity running through water with two electrodes to split water molecules into oxygen and hydrogen gases, which appear as bubbles. This process produces green hydrogen, which represents just a small fraction of hydrogen production globally due to the high energy required.

Most hydrogen is produced from splitting natural gas, known as blue hydrogen, which emits greenhouse gases into the atmosphere.

UH lab produces building blocks to DNA and RNA in deep space

Conceptualization of the role of methanediamine in the galactic cosmic ray mediated synthesis of DNA and RNA bases in deep space.
Illustration Credit: University of Hawaiʻi

The synthetic production of a critical building block called methanediamine for the first time by researchers in University of Hawaiʻi at Mānoa’s Department of Chemistry could lead to key insights into the origins of life. The researchers have discovered a method to produce it in a lab under conditions that mimic icy interstellar nanoparticles in cold molecular clouds in space.

Nitrogen is the most abundant element in Earth’s atmosphere. It is also incorporated into nearly one-third of some 300 molecules identified in the interstellar medium, which is the material that exists in the space between the stars in a galaxy.

Most nitrogen-containing molecules in deep space carry exclusively the nitrile moiety (organic compound that has a carbon, nitrogen functional group), while amines (a member of a family of nitrogen-containing organic compounds that is derived from ammonia) and imines (compounds containing a carbon-nitrogen double bond) are relatively rare. According to experts, an understanding of the origin of these less common molecule parts in deep space is central to the hypothesis for the origin of life because all nucleobases (nitrogen-containing compounds) found in contemporary RNA and DNA contain amines and imines.

Monday, December 12, 2022

Princeton chemists create quantum dots at room temp using lab-designed protein

Nature uses 20 canonical amino acids as building blocks to make proteins, combining their sequences to create complex molecules that perform biological functions.

But what happens with the sequences not selected by nature? And what possibilities lie in constructing entirely new sequences to make novel, or de novo, proteins bearing little resemblance to anything in nature?

That’s the terrain where Michael Hecht, professor of chemistry, works with his research group. And recently, their curiosity for designing their own sequences paid off.

They discovered the first known de novo (newly created) protein that catalyzes, or drives, the synthesis of quantum dots. Quantum dots are fluorescent nanocrystals used in electronic applications from LED screens to solar panels.

Their work opens the door to making nanomaterials in a more sustainable way by demonstrating that protein sequences not derived from nature can be used to synthesize functional materials — with pronounced benefits to the environment.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles