. Scientific Frontline

Thursday, February 16, 2023

AI could improve mental health care

Photo Credit: SHVETS production

Patients are often asked to rate their feelings using a rating scale, when talking to psychologists or doctors about their mental health. This is currently how depression and anxiety are diagnosed. However, a new study from Lund University in Sweden shows that allowing patients to describe their experience using their own words - is potentially viewed as more precise and preferred by the patients. The Lund researchers have developed an AI-tool that could help doctors analyze their patients’ answers.

The study, published in PLOS ONE, shows that clinicians and patients differ somewhat, as clinics often prefer rating scales when diagnosing a patient (e.g., little interest in doing things: not at all, sometimes, often, daily) whereas patients prefer free language (e.g., Describe your mental health).

The researchers surveyed a group of 150 patients with self-diagnosed depression or anxiety, posing the same questions to a control group of 150 other participants.

New study identifies key success factors for large carnivore rewilding efforts

A puma known as Anhanguera is released into Serra do Japi, Jundiaí, state of São Paulo, Brazil, as part of the Vida Livre da Mata Ciliar program.
Photo Credit: Associação Mata Ciliar.

New research led by the University of Oxford has identified the top factors that determine whether efforts to relocate large carnivores to different areas are successful or not. The findings, published today in Biology Conservation, could support global rewilding efforts, from lynx reintroductions in the UK to efforts to restore logged tropical forests.

As apex predators, large carnivores play crucial roles in ecosystems, however their numbers have plummeted over recent decades. Relocating large carnivores can support their conservation, for instance to reintroduce a species to an area where it has been exterminated, or to reinforce an existing population to increase its viability. But to date, there has been little information about what factors determine whether these (often costly) efforts are successful or not.

To investigate this, an international team led by researchers at the University of Oxford’s Department of Biology, Wildlife Conservation Research Unit (WildCRU), and School of Geography and the Environment analyzed data from almost 300 animal relocations which took place between 2007 and 2021. These spanned 22 countries in five continents, and involved 18 different carnivore species, including bears, hyaenas, big cats, and wild dogs.

Moms’ and babies’ medical data predicts prematurity complications, Stanford Medicine-led study shows

Researchers used an algorithm of medical record data to predict how at-risk newborns will fare in their first two months of life.
Photo Credit: Alexander Grey

Stanford Medicine scientists and their colleagues have shown they can tap mothers’ and babies’ medical records to better predict newborn health risks.

By sifting through electronic health records of moms and babies using a machine-learning algorithm, scientists can predict how at-risk newborns will fare in their first two months of life. The new method allows physicians to classify, at or before birth, which infants are likely to develop complications of prematurity.

A study describing the method, developed at the Stanford School of Medicine, was published online Feb. 15 in Science Translational Medicine.

“This is a new way of thinking about preterm birth, placing the focus on individual health factors of the newborns rather than looking only at how early they are born,” said senior study author Nima Aghaeepour, PhD, an associate professor of anesthesiology, perioperative and pain medicine and of pediatrics. The study’s lead authors are postdoctoral scholar Davide De Francesco, PhD, and Jonathan Reiss, MD, an instructor in pediatrics.

Tsunami in a water glass

Fabio Novelli, Martina Havenith and Claudius Hoberg (from left) were able to observe the birth of an electron dissolved in water in RESOLV.
Photo Credit: © RUB, Marquard

With a new experiment, the effects of an electron in solution on the surrounding liquid have been observed.

So-called hydrated electrons play a major role in many physical, chemical and biological processes. They are not bound to an atom or molecule and are freely in the solution. Since they are only ever produced as an intermediate product, they are extremely short-lived. The team of the Ruhr Explores Solvation Cluster of Excellence RESOLV at the Ruhr University Bochum, a new experiment was the first time to observe how the hydrated electron acts on the solution over its life. The researchers around Prof. Dr. Martina Havenith-Newen report in the journal Proceedings of the National Academy of Science PNAS from 15. February 2023.

The simplest anion

"A single electron in water is the simplest conceivable anion, which, however, plays a major role in a large number of chemical processes," Martina Havenith describes the importance of the object of investigation. “For example, it plays an important role in energy transmission during photochemical and electrochemical phenomena, in atmospheric chemistry, in the radiation damage to biological substances and in medical therapy." For several decades, this has given the hydrated electron the constant attention of experimental and theoretical groups.

New Horizons for Organoboron and Organosilicon Chemistry with Triple Elementalization


A technique for easily modifying quinolines with carbon, boron, and silicon groups simultaneously has been unveiled by scientists at Tokyo Tech. With organoboron and organosilicon compounds becoming more and more important in pharmaceuticals, the novel technique could facilitate the development of new drugs. Moreover, modified quinolines can be readily used as convenient scaffolds for synthesizing organic chemicals.

In recent years, organic chemicals containing boron (B) and silicon (Si) have found applications in various fields, including optoelectronics and pharmaceuticals. Moreover, they can also serve as building blocks for complex organic chemicals. As a result, scientists are actively looking for new ways to leverage these versatile chemical tools as well as produce more kinds of organosilicon and organoboron compounds.

One limitation of the synthesis methods currently available for these chemicals is that we cannot introduce multiple B- and Si-containing groups in aromatic nitrogen heterocycles, i.e., carbon rings in which one of the carbon atoms is replaced by a nitrogen atom. If we could produce and freely transform such molecules, it would unlock the synthesis of several compounds relevant in medicinal chemistry.

New technology revolutionizes the analysis of old ice

The oldest ice in the world is being drilled for here as part of the European “Beyond EPICA – Oldest Ice” project: the camp at Little Dome C in Antarctica.
Photo Credit: © PNRA/IPEV

Ice cores are a unique climate archive. Thanks to a new method developed by researchers at the University of Bern and Empa, greenhouse gas concentrations in 1.5-million-year-old ice can be measured even more accurately. The EU project “Beyond EPICA” with the participation of the University of Bern aims to recover such old ice in Antarctica.

The search for the oldest ice on earth has taken an important step forward. The Beyond EPICA – Oldest Ice project, a European consortium that includes the University of Bern, completed its second field season at the end of January. The drilling reached a depth of 808 meters. The project objective is to look back 1.5 million years into the past and obtain data on the development of temperature, the composition of the atmosphere and the carbon cycle. A depth of around 2700 meters must be reached in the Antarctic ice sheet and an ice core recovered. If everything goes as planned, this should be the case in 2025. Only then will the complex analysis of the oldest ice in this core follow, which new methods are currently being developed for.

Wednesday, February 15, 2023

Genetic study: Unexpectedly high variation in T-cell receptor genes between persons

Using blood samples, the researchers examined TCR genes in 45 people from different parts of the world.
Photo Credit: Ahmad Ardity

Researchers from Karolinska Institutet have discovered that the genes encoding our T cell receptors vary greatly between persons and populations, which may explain why we respond differently to for example infections. The findings, presented in the journal Immunity, also demonstrate that some gene variants are inherited from Neanderthals.

T-cells that are part of our immune system are central in the protection against infections and cancer. With the help of TCRs, the cells recognize foreign invaders and tumor cells.

“It was previously unknown how variable human TCR genes are”, says Gunilla Karlsson Hedestam, professor at the department of microbiology, tumor and cell biology at Karolinska Institutet and the study's lead author.

Persons from different parts of the world were included

Using deep sequencing of blood samples, the researchers examined TCR genes in 45 people originating from sub-Saharan Africa, East Asia, South Asia and Europe. The researchers showed that these genes vary greatly between different persons and population groups. The results were confirmed by analyses of several thousand additional cases from the 1000 Genomes project.

Discovering the magic in superconductivity’s ‘magic angle’

Left: Marc Bockrath, professor of physics. Center: Jeanie Lau, professor of physics. Right: Mohit Randeria, professor of physics.
Photo Credit: Photos courtesy of Ohio State University

Researchers have produced new evidence of how graphene, when twisted to a precise angle, can become a superconductor, moving electricity with no loss of energy.

In a study published today (Feb. 15, 2023) in the journal Nature, the team led by physicists at The Ohio State University reported on the key role that quantum geometry plays in allowing this twisted graphene to become a superconductor.

Graphene is a single layer of carbon atoms, the lead that is found in a pencil.

In 2018, scientists at the Massachusetts Institute of Technology discovered that, under the right conditions, graphene could become a superconductor if one piece of graphene were laid on top of another piece and the layers were twisted to a specific angle – 1.08 degrees – creating twisted bilayer graphene.

Ever since, scientists have been studying this twisted bilayer graphene and trying to figure out how this “magic angle” works, said Marc Bockrath, professor of physics at Ohio State and co-author of the Nature paper.

Novel Optical and fMRI Platform Identifies Brain Regions that Control Large-scale Brain Network

Default mode network examined by fMRI and optical fiber photometry.
Illustration Credit: Shih Lab

Researchers from the UNC School of Medicine, led by Ian Shih, PhD, Professor and Vice Chair of Neurology and Associate Director of the Biomedical Research Imaging Center, revealed the role of the insular cortex in controlling the Default Mode Brain Network.

When we daydream or revisit memories, a large group of regions within our brain “lights up,” or becomes more active. It’s referred to as the Default Mode Network (DMN) because it is more active when the brain is not focused on the outside world.

Numerous brain disorders, including Alzheimer’s, attention-deficit/hyperactivity disorder, and mood disorders, have been linked to issues with the DMN. However, the neurophysiological basis of the DMN is not well understood.

Neuroimaging techniques, like functional magnetic resonance imaging (fMRI), are not able to directly measure neuronal activity. To address this knowledge gap, a research team led by Ian Shih, PhD, professor and vice chair of the Department of Neurology and associate director of the Biomedical Research Imaging Center, has created a novel experimental platform that is able to optically record local neuronal activity during brain-wide fMRI in rodents.

Scientists find first observational evidence linking black holes to dark energy

Artist’s impression of a supermassive black hole. Cosmological coupling allows black holes to grow in mass without consuming gas or stars.
Image Credit: UH Manoa

Searching through existing data spanning 9 billion years, a University of Michigan physicist and colleagues have uncovered the first evidence of “cosmological coupling”—a newly predicted phenomenon in Einstein’s theory of gravity, possible only when black holes are placed inside an evolving universe.

Gregory Tarlé, U-M professor of physics, and researchers from the University of Hawaii and other institutions across nine countries studied supermassive black holes at the heart of ancient and dormant galaxies to develop a description of them that agrees with observations from the past decade. Their findings are published in two journal articles, one in The Astrophysical Journal and the other in The Astrophysical Journal Letters.

The first study found that these black holes gain mass over billions of years in a way that can’t easily be explained by standard galaxy and black hole processes, such as mergers or accretion of gas. According to the second paper, the growth in mass of these black holes matches predictions for black holes that not only cosmologically couple, but also enclose vacuum energy—material that results from squeezing matter as much as possible without breaking Einstein’s equations, thus avoiding a singularity.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles