. Scientific Frontline

Thursday, June 15, 2023

Tethering of Shattered Chromosomal Fragments Paves Way for New Cancer Therapies

Like pieces of broken safety glass, shattered chromosomal fragments are tethered together during cell division, allowing them to be reassembled into a rearranged chromosome that’s prone to cancerous mutations.
Photo Credit: Marzena P.

Healthy cells work hard to maintain the integrity of our DNA, but occasionally, a chromosome can get separated from the others and break apart during cell division. The tiny fragments of DNA then get reassembled in random order in the new cell, sometimes producing cancerous gene mutations. 

This chromosomal shattering and rearranging is called “chromothripsis” and occurs in the majority of human cancers, especially cancers of the bones, brain and fatty tissue. Chromothripsis was first described just over a decade ago, but scientists did not understand how the floating pieces of DNA were able to be put back together. 

In a study published in Nature, researchers at University of California San Diego have answered this question, discovering that the shattered DNA fragments are actually tethered together. This allows them to travel as one during cell division and be re-encapsulated by one of the new daughter cells, where they are reassembled in a different order.

UD study evaluates how climate shocks impact the planted and harvested areas for crops

Dongyang Wei (left), a doctoral candidate in the Department of Geography and Spatial Sciences, and Kyle Davis, assistant professor in the Department of Geography and Spatial Sciences and the Department of Plant and Soil Sciences, as well as a resident faculty member with UD’s Data Science Institute, led a new study that focused on crop production shocks and how they are affected by variations in planted and harvested areas.
Photo Credit: Evan Krape

As the world faces more climate variability and extremes in the face of global warming, sudden environmental changes add an extra layer of stress to food production in the United States and around the world. It is critical, then, to figure out how the areas in which crops are planted and harvested respond to these stressors, which can bring on ‘shocks’ in production — or, put differently, sudden and statistically significant crop declines. 

These production shocks are a big concern in terms of food stability and many crops in the United States — such as corn, cotton, soybeans and wheat — are all experiencing more frequent production reductions as a result of these shocks.

A new study published in the scientific journal Nature Sustainability led by the University of Delaware’s Dongyang Wei looked at these production shocks and, specifically, how they are affected by variations in planted and harvested areas. 

New study reveals strong connection between heart and brain health


A growing amount of evidence points to interactions between heart health and brain health.

Cardiovascular diseases serve as a crucial backdrop for brain diseases like stroke, dementia, cerebral small vessel disease and cognitive impairment. Studies have shown, for example, that atrial fibrillation, even in stroke-free individuals, is associated with an increased incidence of dementia and silent cerebral damage. Heart failure has been linked to cognitive impairment and dementia due to reduced cerebral blood flow caused by a failing heart. Conversely, mental disorders and negative psychological factors may contribute to the onset and progression of cardiovascular diseases. Individuals with conditions such as schizophrenia, bipolar disorder, epilepsy or depression are more prone to cardiovascular diseases.

Despite this growing knowledge, previous studies on heart-brain interactions and associated risk factors have been limited in scope, focusing on specific diseases or utilizing small sample sizes. Consequently, the overall understanding of the structural and functional links between the heart and brain remains incomplete.

A new study conducted by researchers from UNC-Chapel Hill, the University of Pennsylvania and Purdue University leverages large magnetic resonance imaging (MRI) data to shed light on the close relationship between cardiovascular diseases and brain diseases such as stroke, dementia and cognitive impairment, unraveling the underlying genetic signatures and inter-organ connections between the heart and brain.

This salty gel could harvest water from desert air

MIT engineers have synthesized a superabsorbent material that can soak up a record amount of moisture from the air, even in desert-like conditions. Pictured are the hydrogel discs swollen in water.
 Photo Credit: Gustav Graeber and Carlos D. Díaz-Marín

MIT engineers have synthesized a superabsorbent material that can soak up a record amount of moisture from the air, even in desert-like conditions.

As the material absorbs water vapor, it can swell to make room for more moisture. Even in very dry conditions, with 30 percent relative humidity, the material can pull vapor from the air and hold in the moisture without leaking. The water could then be heated and condensed, then collected as ultrapure water.

The transparent, rubbery material is made from hydrogel, a naturally absorbent material that is also used in disposable diapers. The team enhanced the hydrogel’s absorbency by infusing it with lithium chloride — a type of salt that is known to be a powerful dessicant.

The researchers found they could infuse the hydrogel with more salt than was possible in previous studies. As a result, they observed that the salt-loaded gel absorbed and retained an unprecedented amount of moisture, across a range of humidity levels, including very dry conditions that have limited other material designs.

Tropical butterflies’ wings could help them withstand climate change

Photo Credit: Courtesy of University of Cambridge

Tropical butterflies with bigger, longer and narrower wings are better able to stay cool when temperatures get too hot.

In fact, tropical species’ ability to keep cool at higher air temperatures mean they are more able to “thermoregulate” and keep a balanced body temperature compared to their evolutionary cousins in milder climates.  

Scientists say that the strategies of butterflies from Central America to stay cool mean they could actually be better equipped to deal with global warming than previously thought.

The team behind the latest study argue that conservation researchers should be careful not to assume creatures in hotter parts of the world will suffer most under rising temperatures – rather, some butterflies in temperate regions, such as Western and central Europe, could be at greater risk.

Equipped with hand-held nets, ecologists took the temperature of over 6,800 butterflies in Panama, Austria, the Czech Republic and the UK using a tiny thermometer-like probe. They compared the butterfly’s temperature to that of the surrounding air or the vegetation it was perched on.

Bowel cancer: Researchers find possible cause for chemoresistance

Human colorectal cancer cells
Image Credit: National Cancer Institute

Large quantities of the protein IGF2BP2 not only make bowel cancer grow faster, they also make it resistant to common forms of chemotherapy. This discovery was made by a research team led by Martin Luther University Halle-Wittenberg (MLU) in cooperation with Saarland University. For its new study, published in the scientific journal Molecular Cancer, the team analyzed more than 140 tissue samples from bowel cancer patients and found there was a link between the concentration of IGF2BP2 and the characteristics of the tumors. The findings could help to develop better diagnostic procedures and possibly new forms of therapy in the future.

According to the Robert Koch Institute, bowel cancer is one of the most common cancers in Germany. In 2019, 58,967 men and women were diagnosed with it. "If caught early, bowel cancer can be removed quite well by surgery and it is therefore often curable," says the leader of the study, Professor Sonja Kessler from the Institute of Pharmacy at MLU. Once the disease has progressed, surgery is often no longer an option. In some cases, tumors can develop resistance to common forms of chemotherapy, which means they no longer respond to treatment. "We still do not know how and why some tumors develop this resistance. Currently, there are no reliable tests that can predict this at an early stage," Kessler adds. 

Energy Harvesting Via Vibrations: Researchers develop highly durable and efficient device

The principle, structural design, and application of carbon fiber-reinforced polymer-enhanced piezoelectric nanocomposite materials.
Illustration Credit: ©Tohoku University

An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.

Details of the group's research were published in the journal Nano Energy.

Energy harvesting involves converting energy from the environment into usable electrical energy and is something crucial for ensuring a sustainable future.

"Everyday items, from fridges to street lamps, are connected to the internet as part of the Internet of Things (IoT), and many of them are equipped with sensors that collect data," says Fumio Narita, co-author of the study and professor at Tohoku University's Graduate School of Environmental Studies. "But these IoT devices need power to function, which is challenging if they are in remote places, or if there are lots of them."

Dietary supplementation shown to improve nutrition biomarkers in study of older men

Photo Credit: Andrea

A six-month study of healthy older men demonstrated that daily multivitamin/multimineral supplementation had a positive effect on key nutrition biomarkers.

The research led by Oregon State University’s Tory Hagen and Alexander Michels also showed that the changes in nutrition status could have direct connections to cellular function, measured by the oxygen consumption of the study participants’ blood cells.

The findings, published in the journal Nutrients, suggest that supplementation may be a key tool to help people stay healthier as they age.

“Many older adults take multivitamins, thinking it will help them stay healthy,” said Michels, a research associate at OSU’s Linus Pauling Institute. “However, previous studies have shown mixed results when it comes to multivitamins and disease risk. We wanted to know why there was so much uncertainty. Is it possible that multivitamins aren’t as effective at changing nutrition biomarkers in older adults?”

Elimination of type of bacteria suggests treatment for endometriosis

Fusobacterium (white dots) is highly expressed near the uterus (endometrium) of endometriosis patients.
Image Credit: Professor Yutaka Kondo

A research group from the Graduate School of Medicine and iGCORE at Nagoya University in Japan, has discovered that using an antibiotic to target Fusobacterium reduced the formation of lesions associated with endometriosis, a gynecological disorder characterized by endometrial tissue usually found inside the uterus being found outside it. Their findings suggest an alternative treatment for this disorder. The study was published in Science Translational Medicine.

Endometriosis affects one in ten women between the ages of 15 and 49. The disorder can cause lifelong health problems, including pelvic pain and infertility. Although it can be treated using hormone therapy and surgical resection, these procedures sometimes lead to side effects, recurrence, and a significant impact on pregnancy.

The group led by Professor Kondo (he, him) and Assistant Professor Ayako Muraoka (she, her) from the Nagoya University Graduate School of Medicine, in collaboration with the National Cancer Center, found that the uterus of mice infected with Fusobacterium had more and heavier lesions. However, mice that had been given an antibiotic to eradicate Fusobacterium saw improved lesion formation.

Wednesday, June 14, 2023

UC Irvine scientists create long-lasting, cobalt-free, lithium-ion batteries

“We are basically the first group that started thinking about the supply chain, or the pain point, that nickel will bring to the EV industry in a matter of, I would say, three to five years,” says Huolin Xin, UCI professor of physics & astronomy, lead author of a paper in Nature Energy on a new way to use nickel in lithium-ion batteries.
Photo Credit: Steve Zylius / UCI

In a discovery that could reduce or even eliminate the use of cobalt – which is often mined using child labor – in the batteries that power electric cars and other products, scientists at the University of California, Irvine have developed a long-lasting alternative made with nickel.

“Nickel doesn’t have child labor issues,” said Huolin Xin, the UCI professor of physics & astronomy whose team devised the method, which could usher in a new, less controversial generation of lithium-ion batteries. Until now, nickel wasn’t a practical substitute because large amounts of it were required to create lithium batteries, he said. And the metal’s cost keeps climbing.

To become an economically viable alternative to cobalt, nickel-based batteries needed to use as little nickel as possible.

“We’re the first group to start going in a low-nickel direction,” said Xin, whose team published its findings in the journal Nature Energy. “In a previous study by my group, we came up with a novel solution to fully eliminate cobalt. But that formulation still relied on a lot of nickel.”

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles