. Scientific Frontline: Engineering
Showing posts with label Engineering. Show all posts
Showing posts with label Engineering. Show all posts

Thursday, October 26, 2023

Machine can quickly produce needed cells for cancer treatment

WSU researchers have developed a minifridge-sized bioreactor that is able to manufacture the cells, called T cells, at 95% of the maximum growth rate – about 30% faster than current technologies.
Photo Credit: Courtesy of Washington State University

A new tool to rapidly grow cancer-killing white blood cells could advance the availability of immunotherapy, a promising therapy which harnesses the power of the body’s immune response to target cancer cells.

Washington State University researchers have developed a minifridge-sized bioreactor that is able to manufacture the cells, called T cells, at 95% of the maximum growth rate – about 30% faster than current technologies. The researchers report on their work in the journal Biotechnology Progress. They developed it using T cells from cattle, developed by co-author Bill Davis of WSU’s Veterinary College, and anticipate it will perform similarly on human cells.

In 2022, there were over 1,400 different types of therapies using T cells in development, with seven approved by the FDA for a variety of cancer treatments. Use of the therapy, called chimeric antigen receptor T cell (CAR-T), is limited, however, because of the cost and time needed to grow T cells. Each infusion treatment for a cancer patient requires up to 250 million cells.

Wednesday, October 18, 2023

No more big needles: scientists develop a skin patch that painlessly delivers drugs into the body


An affordable microneedle skin patch that delivers a controlled dosage of medicine directly into the body, eliminating the need for injections or oral medication, has been developed by a team led by scientists at the University of Bath.

It is hoped that the patches, which are described in the journal Biomaterials Advances, will be ready for use within the next five to 10 years.

What makes the microneedle patches unique is that they are made from a hydrogel (a gel-like substance in which water forms the liquid component), with the active ingredient encapsulated inside the hydrogel microneedle structure rather than in a separate reservoir.

They are also more affordable than other commercially available microneedle patches, as they are produced from 3D printed molds. Molds produced this way are easy to customize, which keeps the costs down.

Tuesday, October 17, 2023

Decontamination method zaps pollutants from soil

Yi Cheng (from left), James Tour and Bing Deng
Photo Credit: Gustavo Raskosky/Rice University

Filtration systems are designed to capture multiple harmful substances from water or air simultaneously, but pollutants in soil can only be tackled individually or a few at a time ⎯ at least for now.

A method developed by Rice University scientists and collaborators at the United States Army Engineer Research and Development Center (ERDC) could help turn soil remediation processes from piecemeal to wholesale.

A team of Rice scientists led by chemist James Tour and researchers from the geotechnical structures and environmental engineering branches of the ERDC showed that mixing polluted soil with nontoxic, carbon-rich compounds that propel electrical current, such as biochar, then zapping the mix with short bursts of electricity flushes out both organic pollutants and heavy metals without using water or generating waste.

New Polymer Membranes, AI Predictions Could Dramatically Reduce Energy, Water Use in Oil Refining

A sample of a DUCKY polymer membrane researchers created to perform the initial separation of crude oils using significantly less energy.
Photo Credit: Candler Hobbs

A new kind of polymer membrane created by researchers at Georgia Tech could reshape how refineries process crude oil, dramatically reducing the energy and water required while extracting even more useful materials.

The so-called DUCKY polymers — more on the unusual name in a minute — are reported in Nature Materials. And they’re just the beginning for the team of Georgia Tech chemists, chemical engineers, and materials scientists. They also have created artificial intelligence tools to predict the performance of these kinds of polymer membranes, which could accelerate development of new ones.

The implications are stark: the initial separation of crude oil components is responsible for roughly 1% of energy used across the globe. What’s more, the membrane separation technology the researchers are developing could have several uses, from biofuels and biodegradable plastics to pulp and paper products.

“We’re establishing concepts here that we can then use with different molecules or polymers, but we apply them to crude oil because that’s the most challenging target right now,” said M.G. Finn, professor and James A. Carlos Family Chair in the School of Chemistry and Biochemistry.

Monday, October 16, 2023

MIT design would harness 40 percent of the sun’s heat to produce clean hydrogen fuel

MIT engineers have developed a design for a system that efficiently harnesses the sun’s heat to split water and generate hydrogen.
Credit: Courtesy of the researchers
(CC BY-NC-ND 3.0 DEED)

MIT engineers aim to produce totally green, carbon-free hydrogen fuel with a new, train-like system of reactors that is driven solely by the sun.

In a study appearing today in Solar Energy Journal, the engineers lay out the conceptual design for a system that can efficiently produce “solar thermochemical hydrogen.” The system harnesses the sun’s heat to directly split water and generate hydrogen — a clean fuel that can power long-distance trucks, ships, and planes, while in the process emitting no greenhouse gas emissions.

Today, hydrogen is largely produced through processes that involve natural gas and other fossil fuels, making the otherwise green fuel more of a “grey” energy source when considered from the start of its production to its end use. In contrast, solar thermochemical hydrogen, or STCH, offers a totally emissions-free alternative, as it relies entirely on renewable solar energy to drive hydrogen production. But so far, existing STCH designs have limited efficiency: Only about 7 percent of incoming sunlight is used to make hydrogen. The results so far have been low-yield and high-cost.

Saturday, October 14, 2023

A New Method for Assessing the Microbiome of the Human Gut

A technique called 'bead beating.'
Photo Credit: Courtesy of California Institute of Technology

The gut microbiome—the population and variety of bacteria within the intestine—is thought to influence a number of behavioral and disease traits in humans. Most obviously, it affects intestinal health. Cancer, inflammatory bowel disease, and celiac disease, for example, are all affected by the gut microbiome. But recent research at Caltech and other research centers has identified connections between the gut microbiome and diseases such as Parkinson's disease and multiple sclerosis as well as links between the gut microbiome and the presence of autistic behaviors, anxious behaviors, and a propensity to binge-eat sweets. (Most of this work has been done in the laboratory of Sarkis Mazmanian, Caltech's Luis B. and Nelly Soux Professor of Microbiology, who works mainly on mouse models.)

Looking directly at the human gut and the bacteria that make this space their home is often performed with sequencing—a process that analyzes the DNA sequences that make up each organism. However, this process is difficult in the intestine largely because the amount of microbial DNA in the gut is miniscule in comparison to the amount of host DNA. In intestinal tissue, roughly 99.99 percent of the DNA present is from the host organism; only 0.01 percent is microbial DNA.

However powerful the effects of these microbes, it is hard to understand their role without knowing their composition. Microbiome studies often rely on studies of feces and saliva, but these are quite different from the ecosystem of the gut itself.

Friday, October 13, 2023

Ultrahigh-sensitivity microprobe optimizes detection of molecular fingerprints

Illustration of a whispering-gallery-mode (WGM) microprobe scanning across a sample substrate to collect 2D mapping of molecular fingerprints of substances.
Illustration Credit: Yang lab

Being a good detective requires top-notch evidence gathering, going where the clues are and recognizing their meaning. The same holds true in the realm of sensing technology, where the quest for the perfect balance between ultrahigh sensitivity and a large detection area has been an ongoing challenge. These properties are crucial for a wide range of applications, from biomedical monitoring and chemical imaging to magnetic sensing and vibration detection.

Optical whispering-gallery-mode microsensors, characterized by their ability to trap light in tiny spherical cavities, have emerged as a promising platform for various sensing applications. However, they have historically struggled to achieve both ultrahigh sensitivity and a substantial detection area simultaneously.

Breaking new ground in the field, researchers working with Lan Yang, the Edwin H. & Florence G. Skinner Professor in the McKelvey School of Engineering at Washington University in St. Louis, have developed a scanning whispering-gallery-mode (WGM) microprobe. This novel device represents a shift in the world of microsensors, offering a remarkable solution to the sensitivity-detection area trade-off conundrum. The findings were published in Light: Science & Applications.

Thursday, October 12, 2023

Drug-filled nanocapsule helps make immunotherapy more effective in mice

Image illustrates the effect of lactate oxidase (LOx) nanocapsules (depicted in orange) within solid tumors. By reducing lactate concentrations and generating hydrogen peroxide in the tumor microenvironment, these nanocapsules promote the infiltration and activation of T cells (depicted in blue and green).
Image Credit: Courtesy of the Jing Wen laboratory.

UCLA researchers have developed a new treatment method using a tiny nanocapsule to help boost the immune response, making it easier for the immune system to fight and kill solid tumors.

The investigators found the approach, described in the journal Science Translational Medicine, increased the number and activity of immune cells that attack the cancer, making cancer immunotherapies work better.

“Cancer immunotherapy has reshaped the landscape of cancer treatment,” said senior author of the study Jing Wen, assistant adjunct professor of microbiology, immunology, & molecular genetics at the David Geffen School of Medicine at UCLA and a scientist at the UCLA Jonsson Comprehensive Cancer Center. “However, not all patients with solid tumors respond well to immunotherapy, and the reason seems to be related to the way the cancer cells affect their surroundings.”

Cancer cells produce a lot of lactate, Wen explained, which creates an environment around the solid tumor that makes it difficult for the immune system to work effectively against the cancer.

Tuesday, October 10, 2023

Rice-engineered material can reconnect severed nerves

Rice University doctoral alum Joshua Chen is lead author on a study published in Nature Materials.
 Photo Credit: Gustavo Raskosky/Rice University

Researchers have long recognized the therapeutic potential of using magnetoelectrics ⎯ materials that can turn magnetic fields into electric fields ⎯ to stimulate neural tissue in a minimally invasive way and help treat neurological disorders or nerve damage. The problem, however, is that neurons have a hard time responding to the shape and frequency of the electric signal resulting from this conversion.

Rice University neuroengineer Jacob Robinson and his team designed the first magnetoelectric material that not only solves this issue but performs the magnetic-to-electric conversion 120 times faster than similar materials. According to a study published in Nature Materials, the researchers showed the material can be used to precisely stimulate neurons remotely and to bridge the gap in a broken sciatic nerve in a rat model.

The material’s qualities and performance could have a profound impact on neurostimulation treatments, making for significantly less invasive procedures, Robinson said. Instead of implanting a neurostimulation device, tiny amounts of the material could simply be injected at the desired site. Moreover, given magnetoelectrics’ range of applications in computing, sensing, electronics and other fields, the research provides a framework for advanced materials design that could drive innovation more broadly.

Monday, October 9, 2023

Predicting prostate cancer recurrence 15 months faster

Hector Gomez, a professor in Purdue University’s School of Mechanical Engineering, and his international collaborators have developed a patent-pending method and algorithm to predict the recurrence of prostate cancer in patients treated by radiation therapy.
Photo Credit: Purdue University/Vincent Walter

A Purdue University mechanical engineer and his international collaborators have developed a patent-pending method and algorithm to predict the recurrence of prostate cancer in patients treated by radiation therapy.­

Hector Gomez, a professor in Purdue University’s School of Mechanical Engineering, said data indicates the model-based predictors can identify relapsing patients a median of 14.8 months earlier than the current clinical practice.

Gomez said radiation is an effective treatment for patients of all ages to treat tumors ranging in risk from low to very high. According to Johns Hopkins Medicine, between 20% to 30% of patients will experience a recurrence after the five-year period, post-therapy.

“The detection of prostate cancer recurrence after radiation relies on the measurement of a sustained rise of the serum levels of a substance called prostate-specific antigen, or PSA,” Gomez said. “However, the recurrence may take years to occur, which delays the delivery of a secondary treatment to patients with recurring tumors.”

Thursday, October 5, 2023

Scorpius images to test nuclear stockpile simulations

Two cathode inductive voltage-adder cells on the electrical test stand are aligned at Sandia National Laboratories. After thousands of tests, each holding 50 kilovolts across the insulating gap, they are ready to be mounted on seven-cell modules.
Photo Credit: Craig Fritz

One thousand feet below the ground, three national defense labs and a remote test site are building Scorpius — a machine as long as a football field — to create images of plutonium as it is compressed with high explosives, creating conditions that exist just prior to a nuclear explosion.

These nanosecond portraits will be compared with visuals of the same events generated by supercomputer codes to check how accurately the computed images replicate the real thing.

“It’s clear we need to know that the stockpile will work if required,” said Jon Custer, Sandia National Laboratories project lead. “Before President Bush’s testing moratorium in 1992, we knew it did since we were physically testing. Now we have computer codes. How well do they predict what really happens? Do we have accurate data we put into the codes? To answer these questions with higher fidelity, we need better experimental tools, and Scorpius is a major new experimental tool.”

The $1.8 billion project, combining the expertise of researchers from Sandia, Los Alamos and Lawrence Livermore national labs with support from the Nevada National Security Site — a test area bigger than the state of Rhode Island — is expected to be up and running by late 2027.

Wednesday, October 4, 2023

Laser system to defend space assets from debris in Earth’s orbit

Earth’s lower orbit is filling up with junk that poses a threat to space assets. New WVU research explores whether space-based lasers can zap even tiny particles or large fields of debris off potential collision courses with objects like satellites or space stations.
Illustration Credit: Savanna Leech | West Virginia University

If West Virginia University research pays off, debris that litters the planet’s orbit and poses a threat to spacecraft and satellites could get nudged off potential collision courses by a coordinated network of space lasers.

Hang Woon Lee, director of the Space Systems Operations Research Laboratory at WVU, said a junkyard of human-made debris, including defunct satellites, is accumulating around Earth. The more debris in orbit, the higher the risk that some of that debris will collide with manned and unmanned space assets. He said he believes the best chance for preventing those collisions is an array of multiple lasers mounted to platforms in space. The artificial intelligence-powered lasers could maneuver and work together to respond rapidly to debris of any size.

Lee, an assistant professor in mechanical and aerospace engineering at the Benjamin M. Statler College of Engineering and Mineral Resources, is a 2023 recipient of NASA’s prestigious Early Career Faculty award for potentially breakthrough research. NASA is supporting Lee’s rapid-response debris removal study with $200,000 in funding per year for up to three years. 

New dog, old tricks: New AI approach yields ‘athletically intelligent’ robotic dog

A doglike robot can navigate unknown obstacles using a simple algorithm that encourages forward progress with minimal effort.
Video Credit: Shanghai Qi Zhi Institute/Stanford University

With a simplified machine learning technique, AI researchers created a real-world “robodog” able to leap, climb, crawl, and squeeze past physical barriers as never before.

Someday, when quakes, fires, and floods strike, the first responders might be packs of robotic rescue dogs rushing in to help stranded souls. These battery-powered quadrupeds would use computer vision to size up obstacles and employ doglike agility skills to get past them.

Toward that noble goal, AI researchers at Stanford University and Shanghai Qi Zhi Institute say they have developed a new vision-based algorithm that helps robodogs scale high objects, leap across gaps, crawl under thresholds, and squeeze through crevices – and then bolt to the next challenge. The algorithm represents the brains of the robodog.

“The autonomy and range of complex skills that our quadruped robot learned is quite impressive,” said Chelsea Finn, assistant professor of computer science and senior author of a new peer-reviewed paper announcing the teams’ approach to the world, which will be presented at the upcoming Conference on Robot Learning. “And we have created it using low-cost, off-the-shelf robots – actually, two different off-the-shelf robots.”

Insect Cyborgs: Towards Precision Movement

Image Credit: ©Dai Owaki

Insect cyborgs may sound like science fiction, but it's a relatively new phenomenon based on using electrical stimuli to control the movement of insects. These hybrid insect computer robots, as they are scientifically called, herald the future of small, high mobile and efficient devices.

Despite significant progress being made, however, further advances are complicated by the vast differences between different insects' nervous and muscle systems.

In a recent study published in the journal eLife, an international research group has studied the relationship between electrical stimulation in stick insects' leg muscles and the resultant torque (the twisting force that makes the leg move).

Tuesday, October 3, 2023

Wearable sensor to monitor ‘last line of defense’ antibiotic

Sandia National Laboratories postdoctoral fellow Alex Downs places a wearable puck with microneedles under a microscope. Sandia researchers have combined earlier work on minimally invasive microneedles with nanoscale sensors to create a wearable sensor patch capable of continuously monitoring the levels of a ‘last line of defense’ antibiotic.
Photo Credit: Craig Fritz

Since the discovery of penicillin in 1928, bacteria have evolved numerous ways to evade or outright ignore the effects of antibiotics. Thankfully, healthcare providers have an arsenal of infrequently used antibiotics that are still effective against otherwise resistant strains of bacteria.

Researchers at Sandia National Laboratories have combined earlier work on painless microneedles with nanoscale sensors to create a wearable sensor patch capable of continuously monitoring the levels of one of these antibiotics.

The specific antibiotic they’re tracking is vancomycin, which is used as a last line of defense to treat severe bacterial infections, said Alex Downs, a Jill Hruby Fellow and project lead. Continuous monitoring is crucial for vancomycin because there is a narrow range within which it effectively kills bacteria without harming the patient, she added.

“This is a great application because it requires tight control,” said Philip Miller, a Sandia biomedical engineer who advised on the project. “In a clinical setting, how that would happen is a doctor would check on the patient on an hourly basis and request a single time-point blood measurement of vancomycin. Someone would come to draw blood, send it to the clinic and get an answer back at some later time. Our system is one way to address that delay.”

The researchers shared how to make these sensors and the results of their tests in a paper recently published in the scientific journal Biosensors and Bioelectronics.

Monday, October 2, 2023

Morphing robots designed at CSU can grip, climb and crawl like insects

Pulling inspiration from the natural world, researchers at Colorado State University have developed a trio of robots that can morph their bodies and legs as needed.
Video Credit: Colorado State University

Pulling inspiration from the natural world, researchers at Colorado State University have developed a trio of robots that can morph their bodies and legs as needed to better crawl, shimmy or swim over difficult terrain.  These new robotic systems are designed to mimic the way biological organisms adapt their shape depending on their life cycle or environment and were developed by a team from the Department of Mechanical Engineering. The work is described in a new paper published in Nature Communications which outlines the three robotic types and their different abilities including gripping, climbing and amphibious travel.

Associate Professor Jianguo Zhao led the research team on campus in the Department of Mechanical Engineering with recent Ph.D. graduate Jiefeng Sun serving as lead author for the paper. Zhao said these robots are made of materials that can become soft or rigid with changes in temperature and are able to move without the need for bulky power systems such as magnetic coils. That makes them more versatile and better equipped to potentially help humans search tight disaster areas for survivors in the future.

‘Impossible’ Millimeter Wave Sensor Has Wide Potential

This prototype millimeter-wave radar sensor developed at UC Davis is capable of measuring extremely small vibrations and movements while being energy-efficient and cheap to produce.
Photo Credit: Omeed Momeni/University of California, Davis

Researchers at the University of California, Davis, have developed a proof-of-concept sensor that may usher in a new era for millimeter wave radars. In fact, they call its design a “mission impossible” made possible.

Millimeter wave radars send fast-moving electromagnetic waves to targets to analyze their movement, position and speed from the waves bounced back. The benefits of millimeter waves are their natural sensitivity to small-scale movements and their ability to focus on and sense data from microscopic objects.

The new sensor uses an innovative millimeter wave radar design to detect vibrations a thousand times smaller, and changes in a target’s position one hundred times smaller, than a strand of human hair, making it better or on par with the world’s most accurate sensors. Yet unlike its peers, this one is the size of a sesame seed, is cheap to produce and features a long battery life.

Professor Omeed Momeni and his lab in the Department of Electrical and Computer Engineering led the effort. It is part of an ongoing project funded by the Foundation for Food & Agriculture Research, or FFAR, to develop a low-cost sensor capable of tracking the water status of individual plants. This new radar is the necessary steppingstone that proves it is possible. The work is published in the September 2023 issue of IEEE Journal of Solid-State Circuits.

New material discovery could revolutionize rollout of global vaccinations

Photo Credit: RF._.studio

New raw vaccine materials that could make vaccines more accessible, sustainable, and ethical have been discovered.

Adjuvants are vaccine ingredients that boost a person’s immune response to a vaccine, providing greater protection against disease. One of the most prevalent adjuvant materials used in vaccines is squalene, which is typically sourced from shark livers.

Researchers at the University of Nottingham collaborated with the Access to Advanced Health Institute (AAHI) to identify synthetic alternatives to squalene that ensure sustainable, reliable, and ethical sourcing of adjuvant raw materials for vaccines moving forward.

New synthetic adjuvant materials were developed from commercially available methacrylate monomers, ensuring that a reliable supply of the material is continually available.

The combination of these adjuvant materials is scalable through catalytic chain transfer polymerization, a process that allows high levels of control over the molecular weight of the product polymer. Controlling the molecular weight is key to the use of adjuvant material in formulations for vaccines as it allows for purification in the manufacturing process and optimizes biological responses following immunization.

Thursday, September 28, 2023

Ultrasound may rid groundwater of toxic ‘forever chemicals’

PFAS is notoriously difficult to clean from the environment, but ultrasound may offer a more effective solution compared to past efforts.
Photo Credit: Edward Jenner

New research suggests that ultrasound may have potential in treating a group of harmful chemicals known as PFAS to eliminate them from contaminated groundwater.

Invented nearly a century ago, per- and poly-fluoroalkyl substances, also known as “forever chemicals,” were once widely used to create products such as cookware, waterproof clothing and personal care items. Today, scientists understand that exposure to PFAS can cause a number of human health issues such as birth defects and cancer. But because the bonds inside these chemicals don’t break down easily, they’re notoriously difficult to remove from the environment.

Such difficulties have led researchers at The Ohio State University to study how ultrasonic degradation, a process that uses sound to degrade substances by cleaving apart the molecules that make them up, might work against different types and concentrations of these chemicals.

By conducting experiments on lab-made mixtures containing three differently sized compounds of fluorotelomer sulfonates – PFAS compounds typically found in firefighting foams – their results showed that over a period of three hours, the smaller compounds degraded much faster than the larger ones. This is in contrast to many other PFAS treatment methods in which smaller PFAS are actually more challenging to treat.

Purdue researchers develop a new type of intelligent architected materials for industry applications

Products made with intelligent architected materials developed at Purdue University have the ability to change from one stable configuration to another stable configuration and back again. The technology is being tested in new aircraft runway mats, nonpneumatic tires and other applications.
Image Credit: Provided by the researchers. Courtesy of Purdue University

Purdue University civil engineering researchers have developed patent-pending intelligent architected materials that can dissipate energy caused by bending, compression, torque and tensile stresses, avoiding permanent plastic deformation or damage, and may also exhibit shape memory properties that allow them to have actuation capacity.

Avoiding damage makes the material reusable and improves human safety and structure durability in products across several industrial sectors.

Pablo Zavattieri, the Jerry M. and Lynda T. Engelhardt Professor in Civil Engineering, leads the research team that has developed this new class of intelligent architected materials.

“These materials are designed for fully recoverable, energy-dissipating structures, akin to what is referred to as architected shape memory materials, or phase transforming cellular materials, known as PXCM,” Zavattieri said. “They can also exhibit intelligent responses to external forces, changes in temperature and other external stimuli.”

Intelligent architected materials such as these have a wide range of potential applications due to their unique properties.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles