. Scientific Frontline: Environmental
Showing posts with label Environmental. Show all posts
Showing posts with label Environmental. Show all posts

Tuesday, March 7, 2023

Pioneering study shows flood risks can still be considerably reduced if all global promises to cut carbon emissions are kept

Maps show historical expected annual flood damage (EAD) in GBP billion at 2020 values, and calculated EAD percentage increase with 1.8 degrees global warming.
Illustration Credit: University of Bristol and Fathom

Annual damage caused by flooding in the UK could increase by more than a fifth over the next century due to climate change unless all international pledges to reduce carbon emissions are met, according to new research.

The study, led by the University of Bristol and global water risk modelling leader Fathom, reveals the first-ever dataset to assess flood hazard using the most recent Met Office climate projections which factor in the likely impact of climate change.

Its findings show the forecasted annual increase in national direct flood losses, defined as physical damage to property and businesses, due to climate change in the UK can be kept below 5% above recent historical levels. But this is only on the proviso that all countries fulfil the ambitious pledges they signed up to at COP26 and also that countries, including the UK, which made further Net Zero commitments, actually achieve these on time and in full.

New Fluorescent Sensors Make it Possible to Detect the Concentration of Mercury in Water

New fluorophores selectively and with high sensitivity recognize mercury ions.
Photo Credit: Anna Marinovich

Scientists from the UrFU, together with Italian and Bulgarian colleagues, synthesized new heterocyclic fluorophores - four types of carboxamides of 2-aryl-1,2,3-triazoles. Their photophysical properties have been investigated under different conditions - solvents and their binary mixtures with water. Sensors based on the fluorophores obtained were sensitive to mercury, so they can be used to detect mercury concentrations in water. Further research will focus on determining the possibility of using these fluorophores to target medicines to affected organs. The authors have published an article on their research and results in the journal Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy.

"A disadvantage of organic fluorophores is their poor solubility in water and aqueous environments. At the same time, when water is added to organic solvents, most dyes and fluorophores have fluorescence quenching. However, in 2001, Professor Ben Zhong Tan of the Chinese University of Hong Kong found that some fluorophores observed not quenching, but rather an increase the fluorescence intensity. This is due to the formation of much larger particles, or nano-aggregates, from the molecules of fluorophores. Tan's discovery was of great significance. Much scientific effort has been devoted to studying the mechanism of his discovery, as well as to the design and synthesis of new fluorophores with the effect of increasing the emission. The fluorophores we obtained have also demonstrated in a mixture of organic solvent and water the effect described by Tang, and with a particular intensity. This opens the way to the practical application of the obtained fluorophores in various fields, especially in the aquatic environment," says Natalya Belskaya, Full Professor of the UrFU Department of Technology of Organic Synthesis and leader of the research team.

Monday, March 6, 2023

Water quality expert develops public tool for diagnosing health of America’s streams

WVU master's degree students Samira Jahan and Md. Tanvirul Islam discuss water quality data with Omar Abdul-Aziz, associate professor in the WVU Benjamin M. Statler College of Engineering and Mineral Resources. Abdul-Aziz has publicly released a model for diagnosing the health of any U.S. freshwater stream in the past, present or future using only water temperature.
Photo Credit: Matt Sunday / West Virginia University

A model for predicting the levels of oxygen in water, developed by West Virginia University researcher Omar Abdul-Aziz, gives citizen scientists nationwide a tool for taking action on stream pollution. 

“I have been looking at water quality data for 20 years,” said Abdul-Aziz, an associate professor at the Benjamin M. Statler College of Engineering and Mineral Resources. “I can tell you that a big percentage of streams in the United States are polluted. Urban streams are getting dumpster runoff, stormwater carrying lawn fertilizers and trash. Wastewater plants aren’t necessarily treating for the dissolved organic carbon, nutrients and pharmaceuticals we’re putting into our sewage.

Abdul-Aziz’s model relies on only water temperature and pH, a measure of acidity, to give an accurate measure of the health of any freshwater stream in the contiguous United States as represented by the amount of oxygen dissolved in the water. Oxygen is fundamental to stream health, and his model is significant because it predicts how much oxygen is in the water of any given stream at any location or time, based on a small amount of easily obtainable data.

Wednesday, March 1, 2023

Climate change raises the threat of multiple hurricanes

Princeton researchers explored the increasing risk of multiple destructive storms hitting locations on the Atlantic and Gulf coasts. In this image, three storms formed in the Atlantic basin in 2017. 
Photo Credit: NASA

Getting hit with one hurricane is bad enough, but new research from Princeton Engineering shows that back-to-back versions may become common for many areas in coming decades.

Driven by a combination of rising sea levels and climate change, destructive hurricanes and tropical storms could become far more likely to hit coastal areas in quick succession, researchers found. In an article published Feb. 27 in the journal Nature Climate Change, the researchers said that in some areas, like the Gulf Coast, such double hits could occur as frequently as once every three years.

“Rising sea levels and climate change make sequential damaging hurricanes more likely as the century progresses,” said Dazhi Xi, a postdoctoral researcher and a former graduate student in civil and environmental engineering and the paper’s lead author. “Today’s extremely rare events will become far more frequent.”

Blue whale foraging and reproduction are related to environmental conditions, study shows

A blue whale surfaces
Photo Credit: Three-shots

A new study of New Zealand blue whales’ vocalizations indicates the whales are present year-round in the South Taranaki Bight and their behavior is influenced by environmental conditions in the region.

The findings are a significant advancement in researchers’ understanding of the habitat use and behavior of this population of blue whales, which Oregon State University researchers first identified as genetically distinct from other blue whale populations less than a decade ago.  

“We went from not knowing 10 years ago whether this was a distinct population to now understanding these whales’ ecology and their response to changing environmental conditions,” said the study’s lead author, Dawn Barlow, a postdoctoral scholar in OSU’s Marine Mammal Institute. “These findings can inform conservation management of this blue whale population and their habitat.”

The patterns and intensity of the whales’ calls and songs over two years showed strong seasonality in their foraging and breeding behavior, and the vocalizations changed based on environmental conditions such as a documented marine heatwave, Barlow said.

“During the marine heatwave, feeding-related calls were reduced, reflecting poor foraging conditions during that period,” Barlow said. “But we also saw changes in vocalizations in the next breeding period, an indication that they put less effort into reproduction following a period of poor feeding conditions.”

Tuesday, February 28, 2023

Zombie forests

As the climate changes, plants often struggle to keep up. In many areas, the vegetation that stands today may not be well adapted for the climate it is now living in. After a major disturbance, such as a wildfire, the plant community likely will not return.
Video Credit: Lindsay Filgas, Madison Pobis & Rob Jordan

The researchers created maps showing where warmer weather has left trees in conditions that don’t suit them, making them more prone to being replaced by other species. The findings could help inform long-term wildfire and ecosystem management in these “zombie forests.”

Like an old man suddenly aware the world has moved on without him, the conifer tree native to lower elevations of California’s Sierra Nevada mountain range finds itself in an unrecognizable climate. A new Stanford-led study reveals that about a fifth of all Sierra Nevada conifer forests – emblems of Western wilderness – are a “mismatch” for their regions’ warming weather. The paper, published Feb. 28 in PNAS Nexus, highlights how such “zombie forests” are temporarily cheating death, likely to be replaced with tree species better adapted to the climate after one of California’s increasingly frequent catastrophic wildfires.

“Forest and fire managers need to know where their limited resources can have the most impact,” said study lead author Avery Hill, a graduate student in biology at Stanford’s School of Humanities & Sciences at the time of the research. “This study provides a strong foundation for understanding where forest transitions are likely to occur, and how that will affect future ecosystem processes like wildfire regimes.” Hill led a related study this past November showing how wildfires have accelerated the shifting of Western trees’ ranges.

In the end, it's the individual advantage that counts

The three phases of exceptional dynamics: (1) Predation on the unprotected bacteria by predators, (2) toxin formation as cooperative defense and recovery of the bacterial population, (3) filament formation as individual defense through evolution and stabilization of densities.
Photo Credit: David Kneis/TU Dresden

Bacteria rely on cooperation and evolution in order to defend themselves against predatory protists

Eating and being eaten is a normal process in nature. These predator-prey dynamics help to stabilize ecosystems. It ensures that individual species do not become too abundant, controls their populations, and prevents damage caused by overpopulation (e.g., browsing by deer in the forest or damage to crops by caterpillars). But how is it that the predators do not simply eat away all the prey, thus breaking down the system? A research team from the Helmholtz Centre for Environmental Research (UFZ) together with scientists from the Technical University (TU) of Dresden and the University of Potsdam has investigated this using bacteria and protists that live in bodies of water and discovered something astonishing. According to an article recently published in ISME Journal, bacteria defend themselves against predatory protists with cooperative behavior and evolution.

In a lake or river, between one and 10 million bacteria live in just 1 ml of water. Such a high density is necessary because bacteria permanently break down organic compounds and pollutants and thus purify the water. However, if there are too many bacteria, this can lead to the spread of pathogens. Preventing this requires predators: microscopic protists of which there are usually between a few hundred and a few thousand individuals in 1 ml of water. They constantly eat bacteria and thus ensure that the bacteria fulfil their cleaning function but do not become too abundant. Using the bacterium Pseudomonas putida and the bacterivorous protist Poteriospumella lacustris, the research team investigated the role of the various defense strategies of the bacteria and how the formation of feeding resistance is related to the dynamics of ecological systems.

Breathing is going to get tougher

Dust rising at Noordoewer, Namibia. Research shows dust will be a major contributor to poor air quality as the climate changes.
Photo Credit: Matthieu Joannon

Not all pollution comes from people. When global temperatures increase by 4 degrees Celsius, harmful plant emissions and dust will also increase by as much as 14 percent, according to new UC Riverside research.

The research does not account for a simultaneous increase in human-made sources of air pollution, which has already been predicted by other studies. 

“We are not looking at human emissions of air pollution, because we can change what we emit,” said James Gomez, UCR doctoral student and lead author of the study. “We can switch to electric cars. But that may not change air pollution from plants or dust.”

Details of the degradation in future air quality from these natural sources have now been published in the journal Communications Earth & Environment. About two-thirds of the future pollution is predicted to come from plants.

All plants produce chemicals called biogenic volatile organic compounds, or BVOCs. “The smell of a just-mowed lawn, or the sweetness of a ripe strawberry, those are BVOCs. Plants are constantly emitting them,” Gomez said.

Monday, February 27, 2023

Researchers find sea urchin die-offs threaten Caribbean coral reefs

The urchin species Diadema antillarum has long been considered the most important grazer in the Caribbean, feeding on algae that would otherwise overrun the reef and make it difficult for coral to thrive.
Photo Credit: Rachel Best

The sustained loss of a once abundant species of sea urchin in the Caribbean could also result in the functional extinction of diverse coral species from the region’s reefs, according to new research from a Florida State University team.

The urchin species Diadema antillarum has long been considered the most important grazer in the Caribbean, feeding on algae that would otherwise overrun the reef and make it difficult for coral to thrive. But two mortality events over the past 40 years have caused much of that urchin population to die off.

New research led by FSU Professor of Biological Science Don Levitan shows that the loss of these algae-free areas due to the sea urchin die-off is threatening the existence of the corals that populate Caribbean reefs.

Levitan, along with collaborator Peter Edmunds, a professor at California State University Northridge, has been collecting data on D. antillarum since his first research trip to St. John, U.S. Virgin Islands, in 1983, recording population density of the species and tracking it through mass mortality events in 1983-1984 and in 2022.

Voluntary UK initiatives to phase out toxic lead shot for pheasant hunting have had little impact

Pheasant
Photo Credit: Julie Mayo

The pledge, made in 2020 by nine major UK game shooting and rural organizations, aims to protect the natural environment and ensure a safer supply of game meat for consumers. Lead is toxic even in very small concentrations, and discarded shot from hunting poisons and kills tens of thousands of the UK’s wild birds each year.

A Cambridge-led team of 17 volunteers bought whole pheasants from butchers, game dealers and supermarkets across the UK in 2022-23. They dissected the birds at home and recovered embedded shotgun pellets from 235 of the 356 pheasant carcasses.

The main metal present in each shotgun pellet was revealed through laboratory analysis - conducted at the Environmental Research Institute, University of the Highlands and Islands, UK. Lead was the main element in 94% of the recovered shot pellets; the remaining 6% were predominantly composed of steel or a metal called bismuth.

Let's get wasted and apply some deep thinking to rubbish

Photo Credit: John Cameron

Artificial intelligence has made a giant leap into our rubbish bins thanks to new technology being deployed at the University of South Australia.

Using algorithms to analyze data from smart bin sensors, UniSA PhD student Sabbir Ahmed is designing a deep learning model to predict where waste is accumulating in cities and how often public bins should be cleared.

“Sensors in the public smart bins can give us a lot of information about how busy specific locations are, what type of rubbish is being disposed of and even how much methane gas is being produced from food waste in bins,” Ahmed says.

“All that data can be fed into a neural network model to predict where bins in parks, shopping centers and other public places are likely to fill up quickly and, conversely, which locations are rarely visited.

“This can help councils to optimize their waste management services, schedule bin clearances and even relocate rarely used bins to where they are needed most.”

Wednesday, February 22, 2023

Trawlers intermix with whale ‘supergroup’ in Southern Ocean

Fin whales surround the research vessel National Geographic Endurance in January 2022.
Video Credit: Eric Wehrmeister

Trawlers working amidst a whale ‘supergroup’ raise red flag about human-whale conflicts in a changing ocean, Stanford study says

Scientists observed close to 1,000 fin whales foraging near Antarctica, while fishing vessels trawled for krill in their midst. Without action, such encounters are likely to become more common as this endangered species recovers and krill harvesting intensifies in the Southern Ocean.

Once driven nearly to extinction, the second-largest animals of all time have recently been spotted in big numbers in the Southern Ocean, competing directly with industrial trawlers for prey, according to research led by scientists from Stanford University and Lindblad Expeditions.

Published in Ecology, the study focuses on scientists’ sighting of an enormous “supergroup” of fin whales foraging for shrimplike animals called krill northwest of the South Orkney Islands in January 2022, with four commercial fishing vessels trawling among them for the same tiny creatures.

The researchers, led by Matthew Savoca of Stanford and Conor Ryan of Lindblad Expeditions, estimate at least 830 and possibly more than 1,100 fin whales were present. This ranks among the largest groups of baleen whales ever recorded since commercial whaling decimated their populations last century.

New zirconia-based catalyst can make plastics upcycling more sustainable

A representation of the zirconia catalyst. The teal shows the mesoporous silica plates, the red represents the zirconia nanoparticles between the two sheets. The polymer chains enter the pores, contact the zirconia nanoparticles, and are cut into shorter chains.
Illustration Credit: Courtesy of Ames National Laboratory

A new type of catalyst breaks down polyolefin plastics into new, useful products. This project is part of a new strategy to reduce the amount of plastic waste and its impact on our environment, as well as recover value that is lost when plastics are thrown away. The catalyst was developed by a team from the Institute for Cooperative Upcycling of Plastic (iCOUP), a U.S. Department of Energy, Energy Frontier Research Center. The effort was led by Aaron Sadow, the director of iCOUP, scientist at Ames National Laboratory, and professor at Iowa State University; Andreas Heyden, professor at the University of South Carolina; and Wenyu Huang, scientist at Ames Lab and professor at Iowa State. The new catalyst is made only of earth-abundant materials, which they demonstrated can break carbon-carbon (CC) bonds in aliphatic hydrocarbons.

Aliphatic hydrocarbons are organic compounds made up of only hydrogen and carbon. Polyolefin plastics are aliphatic hydrocarbon materials composed of long chains of carbon atoms linked together to form strong materials. These materials are a big part of the plastic waste crisis. Wenyu Huang said, “More than half of produced plastics so far are polyolefin based.”

New research reveals 12 ways aquaculture can benefit the environment

Researchers have identified 12 potential ecological benefits of aquaculture including species recovery, habitat restoration, rehabilitation and protection, and removal of overabundant species.
Photo Credit: John French

Aquaculture, or the farming of aquatic plants and animals, contributes to biodiversity and habitat loss in freshwater and marine ecosystems globally, but when used wisely, it can also be part of the solution, new research shows.

Published today in Conservation Biology, University of Melbourne researchers have identified 12 potential ecological benefits of aquaculture. These include species recovery, habitat restoration, rehabilitation and protection, and removal of overabundant species.

Lead author, University of Melbourne researcher Ms. Kathy Overton, said the potential environmental benefits of aquaculture have gone under the radar for many years.

“Most people around the world live near freshwater or marine ecosystems, and we rely on them as sources of food, tourism, recreation, culture, and livelihood,” Ms. Overton said.

“However, our impacts on freshwater and marine ecosystems are degrading important habitats and causing rapid declines in biodiversity. While the negative impacts of some types of aquacultures are well known, we can also use aquaculture as a tool to slow or stop these negative impacts and help restore ecosystems that have been largely lost over the last century.”

Tuesday, February 21, 2023

Salt Could Play Key Role in Energy Transition

Large underground salt formations can aid in the energy transition in myriad ways.
Illustration Credit: UT Jackson School of Geosciences.

A common ingredient – salt – could have a big role to play in the energy transition to lower carbon energy sources.

That’s according to a new study led by researchers at The University of Texas at Austin’s Bureau of Economic Geology.

The study describes how large underground salt deposits could serve as hydrogen holding tanks, conduct heat to geothermal plants, and influence CO2 storage. It also highlights how industries with existing salt expertise, such as solution mining, salt mining, and oil and gas exploration, could help.

“We see potential in applying knowledge and data gained from many decades of research, hydrocarbon exploration, and mining in salt basins to energy transition technologies,” said lead author Oliver Duffy, a research scientist at the bureau. “Ultimately, a deeper understanding of how salt behaves will help us optimize design, reduce risk, and improve the efficiency of a range of energy transition technologies.”

The study was published in the journal Tektonika.

So-called ‘safe’ pesticides have surprising ill effects

When the chemicals you use to protect crops harm their pollinators
Photo Credit: Sandy Millar

Health Canada is currently reviewing regulations for pesticides in Canada, and three UBC researchers say regulators might want to consider what happened in Japan.

A lake in Shimane Prefecture has seen its commercial fishery collapse by more than 90 per cent since 1993, when insecticides known as neonicotinoids were first introduced to the area. It just so happens that zooplankton—the tiny creatures in the water that fish feed on—declined by 83 per cent during the same period.

That’s just one example of the unanticipated ripple effects of pesticides uncovered by UBC ecologists Dr. Risa Sargent, Dr. Juli Carrillo and Dr. Claire Kremen in their review of recent science.

They also found concerning research about glyphosates. Use of this weed-killer has increased 100-fold in recent decades. Because it targets an enzyme that exists only in plants, it was thought to be perfectly safe for animals. However, a study last year showed that it alters the mix of bacteria and microbes in bees’ intestines, while also disrupting their ability to keep hives at the optimum temperature.

Using sewage to forecast COVID-19 infections

Collecting samples at a wastewater treatment plant for the study
Photo Credit: provided by Masaaki Kitajima

Sifting through sewage for SARS-CoV-2 genetic material could help authorities tailor infection control policies.

A new mathematical model uses wastewater samples to effectively forecast the number of clinical COVID-19 cases in a community five days in advance. The approach was developed and validated by Hokkaido University environmental engineer, Masaaki Kitajima, and colleagues in Japan. It could help healthcare authorities better tailor infection control policies, especially when clinical surveillance is lacking. The researchers reported their findings in the journal Environment International

Testing wastewater samples for SARS-CoV-2 as a means to predict surges in clinical cases has been attracting attention. Scientists have been researching this approach since the beginning of the pandemic. However, current methods aren’t particularly sensitive and can only detect increasing cases without being able to forecast their numbers within a community.

Kitajima and his colleagues had already developed a method to detect SARS-CoV-2 RNA in wastewater samples. But this method requires solid material and does not work well with diluted wastewater on rainy days or with treated wastewater that has been clarified and is mostly liquid. So, they modified their approach. Instead of using low-speed centrifugation to create pellets from wastewater samples that then go on to be tested, they used special filters that can capture the viral RNA from diluted wastewater. This is followed by extracting RNA from the filter, amplifying it, and then running polymerase chain reaction (PCR) tests to detect it. They call the new method Efficient and Practical Virus Identification System with Enhanced Sensitivity for Membrane (EPISENS-M).

Monday, February 20, 2023

Lakes in Greenland collapse and release meltwater during winter causing Arctic inland ice drift to speed up

Lakes collapse and release meltwater during winter causing inland ice to speed up in Greenland
Photo Credit: Dominique Müller

A team of international researchers has shown for the first time how 18 meltwater lakes in Greenland collapse during winter which cause the edges of the ice to flow faster. The new knowledge is essential for understanding how climate change influences the flow of ice masses in the Arctic.

In the middle of winter in 2018, an almost 50-year-old meltwater lake disappeared from the ice sheet in western Greenland. The lake was covered by snow and ice when it collapsed but stored liquid water inside. The water disappeared into newly formed cracks and drifted down through the approximately 2 km thick layer of ice. The water hit the rock bed under the ice and flowed out from under the ice sheet towards the sea. This meltwater acted as lubrication between the rock bed and the thick ice on top. As a result, the large mass of ice could slide faster towards the coast, accelerating an unusually large region of inland ice. The drainage of this lake caused several other lakes in the adjacent area to collapse too. In total, the collapsed lakes have released approximately 180 million tons of meltwater that has ended up in the world's oceans.

This is shown by new international research based on satellite data and led by the French Université Grenoble Alpes with contributions from DTU Space at The Technical University of Denmark (DTU). This new knowledge has just been published in Geophysical Research Letters.

Black mosses reveal climate change effects on Antarctic glaciers


As glaciers in Antarctica have melted, previously ice-entombed black mosses have been exposed. A team led by University of Hawaiʻi at Mānoa researchers conducted extensive analyses on these mosses discovered in the northern Antarctic Peninsula, which revealed sensitive glacier behavioral responses to the climate over the past 1,500 years.

The findings, published in the Geological Society of America journal Geology, the top-ranked publication in the field of geological sciences, provide a clearer picture of climate and ice history in the region.

The principal investigator on the project is David W. Beilman, professor and undergraduate chair of the Department of Geography and Environment in UH Mānoa’s College of Social Sciences.

“The Antarctic Peninsula is a high-biodiversity coastal ecosystem that is one of the richest breeding grounds for penguins, seals and seabirds in the continent. What happens there has global impact including the influence of sea-level rise as ice melts,” said Beilman. “There are great scientific models of glacial expansion and recession, but much less is known about what happens on the ground at sea level where ice, ocean and sensitive coastal life intersect. Our field research addresses this gap and improves our understanding of these ecosystems and the changes resulting from polar warming.”

Studying ship tracks to inform climate intervention decision-makers

Sandia National Laboratories statistician Lyndsay Shand stands in front of a satellite image of ship tracks. Ship tracks are an unintentional example of one method to reflect some sunlight back to space before its heat is absorbed.
Photo Credit: Craig Fritz

Sandia scientists develop computer tools to study inadvertent marine cloud brightening

To understand how these ship tracks move and dissipate, the scientists created a mathematical model of ship tracks and how long they last, which they shared in a paper recently published in the scientific journal Environmental Data Science.

“Ship exhaust is an example of aerosol injections into the lower atmosphere, impacting the local environment, and is a daily occurrence,” said Lyndsay Shand, a Sandia statistician and the project lead. “We’ve been developing analytical tools to understand exhaust impacts on clouds from observational data collected by satellites. For example, we can locate a newly formed ship track and follow its evolution to better understand how it affects the local marine environment over time. We have found ship tracks to persist for more than 24 hours, longer than previously documented.”

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles