Southwest Research Institute is investing internal funding to develop more effective conversion surfaces to allow future spacecraft instruments to collect and analyze low-energy particles. Conversion surfaces are ultra-smooth, ultra-thin surfaces covering a silicon wafer that converts neutral atoms into ions to more effectively detect particles from outer space.
Changing the charge of particles simplifies and enhances detection and analysis capabilities. Dr. Jianliang Lin of the Institute’s Mechanical Engineering Division and Dr. Justyna Sokół of SwRI’s Space Science Division lead the multidisciplinary project. The project builds on the successful creation of conversion surfaces for the IMAP-Lo instrument for the Interstellar Mapping and Acceleration Probe (IMAP) spacecraft. IMAP, which is set to launch in 2025, will help researchers better understand the boundary of our heliosphere, the region of space encompassing the solar system, where the solar wind has a significant influence.
“When low-energy atoms enter the instrument from outer space, they bounce off the conversion surface and either gain or lose an electron, making their electrical charge unbalanced. This makes it easier to increase their speed and analyze their mass and other properties,” Sokół said.