![]() |
Mantle Peridotite in the Samail Ophiolite, Oman |
Ancient rocks on the coast of Oman that were once driven deep down toward Earth’s mantle may reveal new insights into subduction, an important tectonic process that fuels volcanoes and creates continents, according to an international team of scientists.
“In a broad sense this work gives us a better understanding of why some subduction zones fail while others set up as long-term, steady-state systems,” said Joshua Garber, assistant research professor of geosciences at Penn State.
Subduction occurs when two tectonic plates collide, and one is forced under the other. Where oceanic and continental plates meet, the denser oceanic plates normally subduct and descend into the mantle, the scientists said.
Occasionally, oceanic plates move on top, or obduct, forcing continental plates down toward the mantle instead. But the buoyancy of the continental crust can cause the subduction to fail, carrying the material back toward the surface along with slabs of oceanic crust and upper mantle called ophiolites, the scientists said.
“The Samail Ophiolite on the Arabian Peninsula is one of the largest and best exposed examples on the surface of the Earth,” Garber said. “It’s one of the best studied, but there have been disagreements about how and when the subduction occurred.”