![]() |
Work in the laboratory begins with these tiny Arabidopsis seedlings. Credit: RUB, Klaus Hagemann |
The function of the regulator protein SPL7 in nutrient absorption from the soil was already known. Now it turns out that this protein also plays a role in a completely different context.
As important nutrients, metals, such as copper, convey the functions of many proteins. If this element is in short supply, plants can increase its absorption and switch to copper-independent metabolic pathways. The decisive factor for this is the protein Squamosa Promoter-Binding Protein-Like 7, or SPL7 for short. It belongs to the group of proteins that can regulate which genes are increasingly read and which proteins are increasingly produced. As researchers at the Ruhr University Bochum (RUB) have now found, SPL7 is also essential for energy metabolism.
A team led by Prof. Dr. Ute Krämer from the Chair of Molecular Genetics and Physiology of Plants at the RUB together with colleagues from the Max Planck Institute for Plant Breeding Research in Cologne and for Molecular Plant Physiology in Potsdam in the journal "The Plant Cell".
In photosynthesis, plants produce sugar from carbon dioxide and water using light energy alone. This results in high-energy substances that are the basis of all life on earth. "The improved understanding of how plants control their sugar balance in this study can be useful for the development of new plant-based biotechnological processes," says Ute Krämer. “The findings could also help to increase agricultural yields on copper deficiency soils."