![]() |
Dmitry Aleksandrov and Sergey Fedotov (left to right) determined the behavior of viruses in cells. Photo credit: Ilya Safarov |
Physicists and mathematicians at the Ural Federal University and the University of Manchester have for the first time created a complex mathematical model that calculates the distribution of nanoparticles (particularly viruses) in living cells. Using the mathematical model, scientists have figured out how nanoparticles cluster (merge into a single particle) inside cells, namely in cellular endosomes, which are responsible for sorting and transporting proteins and lipids.
These calculations will be useful for medical purposes because, on the one hand, they show how viruses behave when they enter cells and tend to replicate. On the other hand, the model allows the exact amount of medication needed for therapy to be as effective as possible and with minimal side effects. The scientists published the model description and calculation results in Crystals, Cancer Nanotechnology and Mathematics.
"The processes in cells are extremely complex, but in simple terms, viruses use different variants to reproduce. Some deliver genetic material directly into the cytoplasm. Others use the endocytosis pathway: they deliver the viral genome by releasing it from the endosomes. If viruses stay in the endosomes, the acidity increases there, and they die in the lysosomes. So, our model allowed us to find out, first of all, when and which viruses "escape" from endosomes in order to survive. For example, some influenza viruses are low-pH-dependent viruses; they fuse with the endosome membrane and release their genome into the cytoplasm. Secondly, we found out that it is easier for viruses to survive in endosomes during clustering, when two particles merge and tend to form a single particle," says Dmitry Aleksandrov, Head of the Multi-Scale Mathematical Modeling Laboratory at UrFU.