![]() |
Xenon purification system at SLAC. The two central columns are each filled with almost half a ton of charcoal, which is used to produce ultra-clean xenon for the LUX-ZEPLIN (LZ) dark matter experiment. Resized Image using AI by SFLORG Credit: Jacqueline Ramseyer Orrell/SLAC National Accelerator Laboratory |
Sitting a mile below ground in an abandoned gold mine in South Dakota is a gigantic cylinder holding 10 tons of purified liquid xenon closely watched by more than 250 scientists around the world. That tank of xenon is the heart of the LUX-ZEPLIN (LZ) experiment, an effort to detect dark matter – the mysterious invisible substance that makes up 85% of the matter in the universe.
“People have been searching for dark matter for over 30 years, and no one has had a convincing detection yet,” said Dan Akerib, professor of particle physics and astrophysics at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory. But with the help of scientists, engineers, and researchers around the globe, Akerib and his colleagues have made the LZ experiment one of the most sensitive particle detectors on the planet.
To reach that point, SLAC researchers built on their expertise in working with liquid nobles – the liquid forms of noble gases such as xenon – including advancing the technologies used to purify liquid nobles themselves and the systems for detecting rare dark matter interactions within those liquids. And, Akerib said, what researchers have learned will aid not only the search for dark matter, but also other experiments searching for rare particle physics processes.
“These are really profound mysteries of nature, and this confluence of understanding the very large and very small at the same time is very exciting,” Akerib said. “It’s possible we could learn something completely new about nature.”