![]() |
Mineralizing carbon dioxide underground is a potential carbon storage method. Credit: Illustration by Cortland Johnson | Pacific Northwest National Laboratory |
A new high-profile scientific review article in Nature Reviews Chemistry discusses how carbon dioxide (CO2) converts from a gas to a solid in ultrathin films of water on underground rock surfaces. These solid minerals, known as carbonates, are both stable and common.
“As global temperatures increase, so does the urgency to find ways to store carbon,” said Pacific Northwest National Laboratory (PNNL) Lab Fellow and coauthor Kevin Rosso. “By taking a critical look at our current understanding of carbon mineralization processes, we can find the essential-to-solve gaps for the next decade of work.”
Mineralization underground represents one way to keep CO2 locked away, unable to escape back into the air. But researchers first need to know how it happens before they can predict and control carbonate formation in realistic systems.
“Mitigating human emissions requires fundamental understanding how to store carbon,” said PNNL chemist Quin Miller, co-lead author of the scientific review featured on the journal cover. “There is a pressing need to integrate simulations, theory, and experiments to explore mineral carbonation problems.”