![]() |
The SEA complex is composed of a cage-like core (SEACAT, blue) that regulates the activity of the wings (SEACIT, white and bright). Credit: Ciencia Graficada |
The mTOR protein plays a central role in cell growth, proliferation and survival. Its activity varies according to the availability of nutrients and some growth factors, including hormones. This protein is implicated in several diseases, including cancer, where its activity frequently increases. To better understand its regulation, a team from the University of Geneva (UNIGE), in collaboration with researchers from the Martin Luther University (MLU) of HalleWittenberg in Germany, and the recently inaugurated Dubochet Center for Imaging (UNIGE-UNIL-EPFL), has identified the structure of the SEA complex - an interdependent set of proteins - responsible for controlling mTOR. The discovery of this structure allows a better understanding of how cells perceive nutrient levels to regulate their growth. This work can be read in the journal Nature.
From yeast to humans, the mTOR protein (mammalian target of rapamycin) is the central controller of cell growth. This protein responds to various signals in the cell’s environment, such as nutrients and hormones, and regulates many fundamental cellular functions, such as protein and lipid synthesis, energy production by mitochondria and the organization of the cell’s structure. Disruptions in mTOR activity are the cause of several diseases, including diabetes, obesity, epilepsy and various types of cancer