![]() |
From left, Alexander White, Geun Ho Ahn, and Jelena Vučković with the nanoscale isolator. Photo Credit: Hannah Kleidermacher |
Using well-known materials and manufacturing processes, researchers have built an effective, passive, ultrathin laser isolator that opens new research avenues in photonics.
Lasers are transformational devices, but one technical challenge prevents them from being even more so. The light they emit can reflect back into the laser itself and destabilize or even disable it. At real-world scales, this challenge is solved by bulky devices that use magnetism to block harmful reflections. At chip scale, however, where engineers hope lasers will one day transform computer circuitry, effective isolators have proved elusive.
Against that backdrop, researchers at Stanford University say they have created a simple and effective chip-scale isolator that can be laid down in a layer of semiconductor-based material hundreds of times thinner than a sheet of paper.
“Chip-scale isolation is one of the great open challenges in photonics,” said Jelena Vučković, a professor of electrical engineering at Stanford and senior author of the study appearing Dec. 1 in the journal Nature Photonics.
“Every laser needs an isolator to stop back reflections from coming into and destabilizing the laser,” said Alexander White, a doctoral candidate in Vučković’s lab and co-first author of the paper, adding that the device has implications for everyday computing, but could also influence next-generation technologies, like quantum computing.