![]() |
Scanning electron microscope image of Vibrio cholerae bacteria, which infects the digestive system. Image Credit: Zeiss DSM 962 SEM T.J. Kirn, M.J. Lafferty, C.M.P Sandoe and R.K. Taylor, |
MIT researchers have identified molecules found in mucus that can block cholera infection by interfering with the genes that cause the microbe to switch into a harmful state.
These protective molecules, known as glycans, are a major constituent of mucins, the gel-forming polymers that make up mucus. The MIT team identified a specific type of glycan that can prevent Vibrio cholerae from producing the toxin that usually leads to severe diarrhea.
If these glycans could be delivered to the site of infection, they could help strengthen the mucus barrier and prevent cholera symptoms, which affect up to 4 million people per year. Because glycans disarm bacteria without killing them, they could be an attractive alternative to antibiotics, the researchers say.
“Unlike antibiotics, where you can evolve resistance pretty quickly, these glycans don’t actually kill the bacteria. They just seem to shut off gene expression of its virulence toxins, so it’s another way that one could try to treat these infections,” says Benjamin Wang PhD ’21, one of the lead authors of the study.