. Scientific Frontline

Wednesday, December 14, 2022

Laser controls ultra-fast water switches

The water is fanned out by a specially developed nozzle. Then the laser is passed through.
Photo Credit: Adrian Buchmann

Researchers are introducing a completely new concept for switches with unprecedented speed.

Researchers at the Ruhr University Bochum have developed an ultra-fast circuit based on water. Thanks to a short but strong laser pulse, the water can be reached within less than a billionth of a second (10th-12 Seconds) in a conductive state and behaves almost like a metal during this time. This makes the circuit faster than the fastest known switching speed of a semiconductor to date. Adrian Buchmann, Dr. Claudius Hoberg and Dr. Fabio Novelli from the Ruhr Explores Solvation Cluster of Excellence, in short RESOLV, report in the journal APL Photonics December 2022.

Laser lets the water behave like a fast switch

All computer arithmetic operations are based on circuits. The speed at which a component can switch between states zero and one ultimately determines the speed of the computer. Semiconductors that enable electrical circuits are installed in current computers. "They are naturally limited in speed," explains Claudius Hoberg.

New Study Sheds Light on Boric Acid Transport and Excretion in Marine Fish


Seawater is known to contain a significant concentration of boric acid, which can be toxic and deadly to living systems. As such, fish living in marine habitats need to be able to excrete boric acid in order to maintain a healthy boron balance. Tokyo Tech researchers have now identified the gene and mechanism of boric acid transport in seawater fish and contrasted it to freshwater species.

Marine fishes live in highly saline environments with ionic concentrations that are vastly different from their blood plasma. Seawater contains a variety of toxic ion species that can build up in the body if the fish does not excrete them. One example of this is boric acid, which—in small amounts—is a vital micronutrient for animals but can prove toxic in excess. Hence, marine fish must develop physiologic means to excrete boric acid. However, how they do this is, as yet, unknown. Now, an international team led by researchers from Tokyo Institute of Technology (Tokyo Tech) has unveiled and demonstrated the molecular mechanisms underlying boric acid secretion in marine pufferfish.

Associate Professor Akira Kato of Tokyo Tech is the principal author of the study, which was published in the Journal of Biological Chemistry. He tells us more about it. "We compared euryhaline pufferfish (which are pufferfish that can survive in varying levels of salinity) accustomed to saltwater, brackish water, and freshwater. On comparing fish from these three habitats, we found that the urine of a seawater pufferfish (Takifugu pufferfish) contained 300 times more boric acid than pufferfish blood, and 60 times more boric acid than seawater." The urine of freshwater fish contained almost 1000 times less boric acid than that of seawater pufferfish. These findings established that Takifugu pufferfish living in seawater excrete boric acid in their urine. Just like in humans, the process of excretion via urine in pufferfish is mediated by the kidneys.

Researchers find the snake clitoris

A death adder snake, also known as acanthophis antarcticus.
Photo Credit: Luke Allen.

An international team of researchers, led by the University of Adelaide has provided the first anatomical description of the female snake clitoris, in a first-of-its-kind study.

PhD Candidate Megan Folwell from the School of Biological Sciences, University of Adelaide, led the research.

“Across the animal kingdom female genitalia are overlooked in comparison to their male counterparts,” said Ms Folwell.

“Our study counters the long-standing assumption that the clitoris (hemiclitores) is either absent or non-functional in snakes.”

The research involved examination of female genitalia in adult snake specimens across nine species, compared to adult and juvenile male snake genitalia.

Associate Professor Kate Sanders, School of Biological Sciences, University of Adelaide, said: “We found the heart-shaped snake hemiclitores is composed of nerves and red blood cells consistent with erectile tissue - which suggests it may swell and become stimulated during mating. This is important because snake mating is often thought to involve coercion of the female – not seduction.”

Tuesday, December 13, 2022

Particles of Light May Create Fluid Flow, Data-Theory Comparison Suggests

Brookhaven Lab theorist Bjoern Schenke's hydrodynamic calculations match up with data from collisions of photons with atomic nuclei at the Large Hadron Collider's ATLAS detector, suggesting those collisions create a fluid of "strongly interacting" particles.
Photo Credit: Brookhaven National Laboratory

A new computational analysis by theorists at the U.S. Department of Energy’s Brookhaven National Laboratory and Wayne State University supports the idea that photons (a.k.a. particles of light) colliding with heavy ions can create a fluid of “strongly interacting” particles. In a paper just published in Physical Review Letters, they show that calculations describing such a system match up with data collected by the ATLAS detector at Europe’s Large Hadron Collider (LHC).

As the paper explains, the calculations are based on the hydrodynamic particle flow seen in head-on collisions of various types of ions at both the LHC and the Relativistic Heavy Ion Collider (RHIC), a DOE Office of Science user facility for nuclear physics research at Brookhaven Lab. With only modest changes, these calculations also describe flow patterns seen in near-miss collisions, where photons that form a cloud around the speeding ions collide with the ions in the opposite beam.

“The upshot is that, using the same framework we use to describe lead-lead and proton-lead collisions, we can describe the data of these ultra-peripheral collisions where we have a photon colliding with a lead nucleus,” said Brookhaven Lab theorist Bjoern Schenke, a coauthor of the paper. “That tells you there’s a possibility that, in these photon-ion collisions, we create a small dense strongly interacting medium that is well described by hydrodynamics—just like in the larger systems.”

Not everyone aware sustainable diets are about helping the planet

Sustainable diets
Photo Credit: yilmazfatih

A new study has found that young Brits would be willing to change to a more sustainable diet, but a lack of understanding about what that actually means is preventing many from doing so.

Many people are also uncertain about what changes they should make.

Sustainable diets are defined by the UN as “diets with low environmental impacts which contribute to food and nutrition security and to healthy life for present and future generations.”

Previous research has suggested that 20-30% of environmental impacts in Europe and the UK originate from our diets, including impacts from food production, processing and retail. It is also now widely accepted that the consumption of meat and animal products typically has a higher environmental impact than plant-based foods.

“When thinking about how to live more sustainably, people seem to understand that this can mean taking fewer flights, using the car less, recycling more, but it seems that not everyone is aware of the difference that changing their diet can make as well,” explained Katherine Appleton, Professor of Psychology at Bournemouth University, who led the study.

Fossil site reveals giant arthropods dominated the seas 470 million years ago

Fossils from the Fezouata Shale. From left to right, a non-mineralized arthropod (Marrellomorpha), a palaeoscolecid worm and a trilobites.
Image Credit Emmanuel Martin.

Discoveries at a major new fossil site in Morocco suggest giant arthropods – relatives of modern creatures including shrimps, insects and spiders – dominated the seas 470 million years ago.

Early evidence from the site at Taichoute, once undersea but now a desert, records numerous large “free-swimming” arthropods.

More research is needed to analyze these fragments, but based on previously described specimens, the giant arthropods could be up to 2m long.

An international research team says the site and its fossil record are very different from other previously described and studied Fezouata Shale sites from 80km away.

They say Taichoute (considered part of the wider “Fezouata Biota”) opens new avenues for paleontological and ecological research.

Scientists get first-ever sound recording of dust devils on Mars

Roger Wiens, a planetary scientist and Mars rover expert at Purdue University, with a topographical model of Mars and a photo of Curiosity.
Photo Credit: John Underwood / Purdue University

When the rover Perseverance landed on Mars, it was equipped with the first working microphone on the planet’s surface. Scientists have used it to make the first-ever audio recording of an extraterrestrial whirlwind.

The study was published in Nature Communications by planetary scientist Naomi Murdoch and a team of researchers at the National Higher French Institute of Aeronautics and Space and NASA. Roger Wiens, professor of earth, atmospheric and planetary sciences in Purdue University’s College of Science, leads the instrument team that made the discovery. He is the principal investigator of Perseverance’s SuperCam, a suite of tools that comprise the rover’s “head” that includes advanced remote-sensing instruments with a wide range of spectrometers, cameras and the microphone.

“We can learn a lot more using sound than we can with some of the other tools,” Wiens said. “They take readings at regular intervals. The microphone lets us sample, not quite at the speed of sound, but nearly 100,000 times a second. It helps us get a stronger sense of what Mars is like.”

Changes in Earth’s orbit may have triggered ancient warming event

Victoria Fortiz (right), then a graduate student at Penn State, and Jean Self-Trail, a research geologist at the U.S. Geological Survey, work on a core sample from the Howards Tract site in Maryland
Photo Credit: Pennsylvania State University

Changes in Earth’s orbit that favored hotter conditions may have helped trigger a rapid global warming event 56 million years ago that is considered an analogue for modern climate change, according to an international team of scientists.

“The Paleocene-Eocene Thermal Maximum is the closest thing we have in the geologic record to anything like what we’re experiencing now and may experience in the future with climate change,” said Lee Kump, professor of geosciences at Penn State. “There has been a lot of interest in better resolving that history, and our work addresses important questions about what triggered the event and the rate of carbon emissions.”

The scientists analyzed core samples from a well-preserved record of the PETM near the Maryland coast using astrochronology, a technique for dating sediments against orbital patterns that occur over tens to hundreds of thousands of years, known as Milankovitch cycles.

They found the shape of Earth’s orbit, or eccentricity, and the wobble in its rotation, or precession, favored hotter conditions at the onset of the PETM and that these orbital configurations together may have played a role in triggering the event.

AI model predicts if a covid-19 test might be positive or not

Xingquan “Hill” Zhu, Ph.D., (left) senior author and a professor; and co-author Magdalyn E. Elkin, a Ph.D. student, both in FAU’s Department of Electrical Engineering and Computer Science.
Photo Credit: Florida Atlantic University

COVID-19 and its latest Omicron strains continue to cause infections across the country as well as globally. Serology (blood) and molecular tests are the two most commonly used methods for rapid COVID-19 testing. Because COVID-19 tests use different mechanisms, they vary significantly. Molecular tests measure the presence of viral SARS-CoV-2 RNA while serology tests detect the presence of antibodies triggered by the SARS-CoV-2 virus.

Currently, there is no existing study on the correlation between serology and molecular tests and which COVID-19 symptoms play a key role in producing a positive test result. A study from Florida Atlantic University ’s College of Engineering and Computer Science using machine learning provides important new evidence in understanding how molecular tests versus serology tests are correlated, and what features are the most useful in distinguishing between COVID-19 positive versus test outcomes.

Researchers from the College of Engineering and Computer Science trained five classification algorithms to predict COVID-19 test results. They created an accurate predictive model using easy-to-obtain symptom features, along with demographic features such as number of days post-symptom onset, fever, temperature, age and gender.

National Ignition Facility achieves fusion ignition

The target chamber of LLNL’s National Ignition Facility, where 192 laser beams delivered more than 2 million joules of ultraviolet energy to a tiny fuel pellet to create fusion ignition on Dec. 5, 2022.
Photo Credit: Lawrence Livermore National Laboratory

The U.S. Department of Energy (DOE) and DOE’s National Nuclear Security Administration (NNSA) today announced the achievement of fusion ignition at Lawrence Livermore National Laboratory (LLNL) — a major scientific breakthrough decades in the making that will pave the way for advancements in national defense and the future of clean power. On Dec. 5, a team at LLNL’s National Ignition Facility (NIF) conducted the first controlled fusion experiment in history to reach this milestone, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it. This first-of-its-kind feat will provide unprecedented capability to support NNSA’s Stockpile Stewardship Program and will provide invaluable insights into the prospects of clean fusion energy, which would be a game-changer for efforts to achieve President Biden’s goal of a net-zero carbon economy.

“This is a landmark achievement for the researchers and staff at the National Ignition Facility who have dedicated their careers to seeing fusion ignition become a reality, and this milestone will undoubtedly spark even more discovery,” said U.S. Secretary of Energy Jennifer M. Granholm. “The Biden-Harris Administration is committed to supporting our world-class scientists — like the team at NIF — whose work will help us solve humanity’s most complex and pressing problems, like providing clean power to combat climate change and maintaining a nuclear deterrent without nuclear testing.”

Featured Article

Key driver of pancreatic cancer spread identified

A 3D tumor vessel-on-a-chip model, showing pancreatic cancer cells (green) invading an engineered blood vessel (red) by breaking down the va...

Top Viewed Articles