. Scientific Frontline

Thursday, December 21, 2023

Common insect species are suffering the biggest losses

The invasive Asian Ladybeetle (Harmonia axyridis)
Photo Credit: Melani Marfeld

Insect decline is being driven by losses among the locally more common species, according to a new study published in Nature. Led by researchers at the German Centre for Integrative Biodiversity Research (iDiv) and the Martin Luther University Halle-Wittenberg (MLU), the meta-analysis of 923 locations around the world notes two significant trends: Species with the most individuals are disproportionately decreasing in number, and no other species have increased to the high numbers previously seen. This likely explains the frequent observation that there are fewer insects around now than ten, twenty, or thirty years ago.

Researchers at iDiv looked at long-term trends of land-based insects, such as beetles, moths, and grasshoppers, and found that decreases in the number of the formerly most common species have contributed most to local insect declines. Common or abundant insect species are those species that are locally found in the highest numbers, but which species these are differ among locations. The study’s findings challenge the idea that changes in insect biodiversity result from rarer species disappearing.

The study follows the recent sounding of alarm bells about insect loss, as researchers note dramatic declines in the total number of insects in many parts of the world. However, little is known about the general trends among locally rare and abundant species over long periods. "It was obvious this needed exploring," says Roel van Klink, lead author of the study and senior scientist at iDiv and MLU. "We had to know whether observations about declines in total abundances of insects differed among common and rare species, and how this translated into changes in the overall insect diversity."

Multitasking microbes: UW–Madison scientists engineer bacteria to make two valuable products from plant fiber

Ben Hall, Genetics Ph.D. Student, holds a mixed sample of microbes and carotenoids, in Tim Donohue’s lab.
Photo Credit: Chelsea Mamott

We often look to the smallest lifeforms for help solving the biggest problems: Microbes help make foods and beverages, cure diseases, treat waste and even clean up pollution. Yeast and bacteria can also convert plant sugars into biofuels and chemicals traditionally derived from fossil fuels — a key component of most plans to slow climate change.

Now University of Wisconsin–Madison researchers have engineered bacteria that can produce two chemical products at the same time from underutilized plant fiber. And unlike humans, these multitasking microbes can do both things equally well.

“To my knowledge, it’s one of the first times you can make two valuable products simultaneously in one microbe,” says Tim Donohue, UW–Madison professor of bacteriology and director of the Great Lakes Bioenergy Research Center.

The discovery, detailed in a paper in the December issue of the journal Applied and Environmental Microbiology, could help make biofuels more sustainable and commercially viable.

“In principle, the strategy lowers the net greenhouse gas emissions and improves the economics,” Donohue says. “The amount of energy and greenhouse gas that you need to make two products in one pot is going to be less than running two pots to make one product in each pot.”

Novel Catalyst System for CO2 Conversion

Kevinjeorjios Pellumbi with the experimental setup for CO2 conversion
Photo Credit: © RUB, Marquard

Researchers are constantly pushing the limits of technology by breaking new ground in CO2 conversion. Their goal is to turn the harmful greenhouse gas into a valuable resource.

Research groups around the world are developing technologies to convert carbon dioxide (CO2) into raw materials for industrial applications. Most experiments under industrially relevant conditions have been carried out with heterogeneous electrocatalysts, i.e. catalysts that are in a different chemical phase to the reacting substances. However, homogeneous catalysts, which are in the same phase as the reactants, are generally considered to be more efficient and selective. To date, there haven’t been any set-ups where homogeneous catalysts could be tested under industrial conditions. A team headed by Kevinjeorjios Pellumbi and Professor Ulf-Peter Apfel from Ruhr University Bochum and the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen has now closed this gap. The researchers outlined their findings in the journal Cell Reports Physical Science.

“Our work aims to push the boundaries of technology in order to establish an efficient solution for CO2 conversion that will transform the climate-damaging gas into a useful resource,” says Ulf-Peter Apfel. His group collaborated with the team led by Professor Wolfgang Schöfberger from the Johannes Kepler University Linz and researchers from the Fritz Haber Institute in Berlin.

New brain-like transistor mimics human intelligence

An artistic interpretation of brain-like computing.
Illustration Credit: Xiaodong Yan/Northwestern University

Taking inspiration from the human brain, researchers have developed a new synaptic transistor capable of higher-level thinking.

Designed by researchers at Northwestern University, Boston College and the Massachusetts Institute of Technology (MIT), the device simultaneously processes and stores information just like the human brain. In new experiments, the researchers demonstrated that the transistor goes beyond simple machine-learning tasks to categorize data and is capable of performing associative learning.

Although previous studies have leveraged similar strategies to develop brain-like computing devices, those transistors cannot function outside cryogenic temperatures. The new device, by contrast, is stable at room temperatures. It also operates at fast speeds, consumes very little energy and retains stored information even when power is removed, making it ideal for real-world applications.

“The brain has a fundamentally different architecture than a digital computer,” said Northwestern’s Mark C. Hersam, who co-led the research. “In a digital computer, data moves back and forth between a microprocessor and memory, which consumes a lot of energy and creates a bottleneck when attempting to perform multiple tasks at the same time. On the other hand, in the brain, memory and information processing are co-located and fully integrated, resulting in orders of magnitude higher energy efficiency. Our synaptic transistor similarly achieves concurrent memory and information processing functionality to more faithfully mimic the brain.”

Gravity data could reveal underwater volcanoes with high potential for devastating eruptions

This looping video shows an umbrella cloud generated by the underwater eruption of the Hunga Tonga-Hunga Ha’apai volcano on Jan. 15, 2022. The GOES-17 satellite captured the series of images that also show crescent-shaped shock waves and lightning strikes.
Video Credit: NASA Earth Observatory image by Joshua Stevens using GOES imagery courtesy of NOAA and NESDIS

New research led by Carnegie’s Hélène Le Mével reveals new details about the system of magma chambers under the Hunga volcano, both before and after its disastrous 2022 eruption. The team’s findings, published last week in Science Advances, demonstrate a new method for probing submarine volcanoes for their potential to cause similar damage.

The eruption came at the end of a month-long period of volcanic unrest, following a seven-year hiatus for the volcano—devastating the Kingdom of Tonga islands and causing a global tsunami, an unprecedented amount of volcanic lightning, and perturbations in the upper atmosphere. . It was the largest explosive eruption recorded since Pinatubo in 1991.

“Although we have a wealth of data about the Hunga eruption’s effects both locally and globally, we know very little about its subsurface structure,” Le Mével explained.

Wednesday, December 20, 2023

Researchers uncover on/off switch for breast cancer metastasis

Songnan Wang (left) and Lingyin Li (right) found that a protein called ENPP1 acts as an on/off switch for breast cancer metastases. High protein levels lead to a high chance of metastasis (as seen by cells growing in the dish on the left), while low levels lead to no metastasis (as seen by no cells growing in the dish on the right).
Photo Credit: Lingyin Li and Songnan Wang

New research from Stanford and the Arc Institute could lead to a new and more effective immunotherapy and help clinicians better predict patient response to existing medicines.

Despite their promise, immunotherapies fail to treat many cancers, including over 80% of some of the most advanced breast cancers. And many of those patients who do respond still experience metastases eventually. New research from Stanford University and the Arc Institute has revealed a better way to predict and improve patient responses.

A team led by Lingyin Li, associate professor of biochemistry at Stanford and Arc Core Investigator, found that a protein called ENPP1 acts as an on/off switch that controls breast cancer’s ability to both resist immunotherapy and metastasize. The study, published on Dec. 20 in the Proceedings of the National Academy of Sciences, showed that ENPP1 is produced by cancer cells and by healthy cells in and around the tumor, and that high patient ENPP1 levels are linked to immunotherapy resistance and subsequent metastases. The research could lead to new, more effective immunotherapies and help clinicians better predict patient response to existing medicines.

“Our study should offer hope for everyone,” said Li, who is also an institute scholar at Sarafan ChEM-H.

RIT researchers develop new technique to study how cancer cells move

Vinay Abhyankar, right, assistant professor of biomedical engineering, works closely with two doctoral students, Mehran Mansouri, left, and Indranil Joshi, on research to assess cancer cell migration processes.
Photo Credit: A. Sue Weisler/RIT

In tumors, cells follow microscopic fibers, comparable to following roads through a city. Researchers at the Rochester Institute of Technology developed a new technique to study different features of these “fiber highways” to provide new insights into how cells move efficiently through the tumor environment.

The study, published in the journal Advanced Functional Materials, focused on contact guidance, a process where migrating cells follow aligned collagen fibers. Understanding this process is crucial, as it plays a key role in cancer metastasis, the spread of cancer to other parts of the body.

“Previous research on contact guidance, a process where cancer cells migrate along aligned collagen fibers, has been largely studied in collagen gels with uniform fiber alignment,” said Vinay Abhyankar, associate professor of biomedical engineering in RIT’s Kate Gleason College of Engineering, and study co-author. “However, the tumor microenvironment also features subtle variations or gradients in fiber alignment, and their role in cell migration has been largely unexplored. We suspected that alignment gradients could efficiently direct cell movement but lacked the technology to test the hypothesis.”

A Trillion Scents. One Nose.

The genome inside an olfactory cell’s nucleus is shown as a tangle of color-marked chromosomes with genomic locations of olfactory receptor genes revealed on the right
Illustration Credit: Lomvardas lab, Columbia's Zuckerman Institute

The mammalian nose is a work of evolutionary art. Its millions of nerve cells, each tailored with just one of thousands of specific odor-chemical receptors encoded in the genome, can collectively distinguish a trillion distinct scents. Those sensations, in turn, inform many behaviors, from assessing food options to discerning friends from foes to sparking memories. 

Today, in the journal Nature, a research team led by scientists at Columbia’s Zuckerman Institute describes a previously undetected mechanism in mice—starring the genetic molecule RNA—that could explain how each sensory cell, or neuron, in mammalian noses becomes tailored to detect a specific odor chemical. 

For example, there are sensory neurons in our noses that bear receptors uniquely tuned to detect ethyl vanillin, the main odorant in vanilla, and other cells with receptors for limonene, lemon’s signature odorant.

Moderate low-carbohydrate diet is beneficial for adults with type 1 diabetes

Sofia Sterner Isaksson and Marcus Lind, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg.
Photo Credit: Malin Arnesson, Johan Wingborg

A moderate low-carbohydrate diet for adults with type 1 diabetes has advantages over traditional diet. The average blood sugar level is reduced and the time with good values during a 24-hour period is increased, without any negative health impact. This has been shown in a study carried out at the University of Gothenburg.

The study published in The Lancet Regional Health - Europe is the largest of its kind to date. Participants were for different periods randomly assigned in a crossover manner to eat a traditional diet with 50% of the energy from carbohydrates, or a moderate low-carbohydrate diet with 30% of the energy from carbohydrates.

This is a moderate reduction in carbohydrates, with 24-hour monitoring of all participants via continuous glucose monitoring (CGM). Blood glucose levels were recorded at least every 15 minutes during the 16 weeks of the study, and were followed up by a dietitian and diabetes nurse.

The researchers emphasize that for safety reasons, major changes in carbohydrate intake in type 1 diabetes should always be made in consultation with the healthcare provider. Individuals should not make these dietary changes on their own, especially not for children with type 1 diabetes. The current study concerns only adults.

Inhaled statins show promise as effective asthma treatment

This diagram shows how the inhaled medication pitavastatin may play a beneficial role in reducing obstructive airway diseases such as asthma.
Illustration Credit: Courtesy of University of California at Davis

Statins are a class of drugs commonly used to lower bad cholesterol, but can they also treat obstructive airway diseases, such as asthma?

UC Davis Health pulmonologists taking part in an NIH-funded study are exploring an innovative approach to determine whether statins may help treat obstructive airway diseases by delivering the medication via inhalation.

“Delivering statins by inhalation is a creative way to deploy a drug that has potent biological effects in pre-clinical cell-based and animal model studies,” said Amir A. Zeki, the principal investigator of the study and professor of internal medicine who specializes in pulmonary, critical care and sleep medicine. “Because oral statins do not penetrate the airway compartment at high enough levels to be effective, delivering statins directly to the lung via inhalation might achieve better local tissue drug levels, and therefore, better clinical results. This allows the use of lower drug doses to achieve efficacy while also minimizing systemic side effects.”

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles