![]() |
Schematic of poly[2]catenane slip tumbling and bonded ring gradient tumbling. Illustration Credit: Reyhaneh A. Farimani |
An international research team is attracting the attention of experts in the field with computational results on the behavior of ring polymers under shear forces: Reyhaneh Farimani, University of Vienna, and her colleagues showed that for the simplest case of connected ring pairs, the type of linkage – chemically bonded vs. mechanically linked – has profound effects on the dynamic properties under continuous shear. In these cases, novel rheological patterns emerge. In addition to being recently published in the prestigious journal Physical Review Letters, the study received an "Editors' Suggestion" for its particular novelty.
The shearing of fluids – meaning the sliding of fluid layers over each other under shear forces – is an important concept in nature and in rheology, the science that studies the flow behavior of matter, including liquids and soft solids. Shear forces are lateral forces applied parallel to a material, inducing deformation or slippage between its layers. Fluid shear experiments allow the characterization of important rheological properties such as viscosity (resistance to deformation or flow) and thixotropy (decrease in viscosity under the influence of shear) which are important in applications ranging from industrial processes to medicine. Studies on the shear behavior of viscoelastic fluids, created by introducing polymers into Newtonian fluids, have already been conducted in recent years. However, a novel approach in the current research involves the consideration of polymer topology – the spatial arrangement and structure of molecules – by using ring polymers. Ring polymers are macromolecules composed of repeating units, forming closed loops without free ends.