. Scientific Frontline

Monday, January 13, 2025

Unraveling the Mysteries of DNA Damage in the Brain

Immunofluorescent staining of mouse brain, showing neurons and glial cells in the hippocampus. Blue are cell nuclei, while green are microfilaments of the cell extensions. Red is a marker of DNA damage and is predominantly in the neurons.
Image Credit: Aris Polyzos/Berkeley Lab

Brain cells receive sensory inputs from the outside world and send signals throughout the body telling organs and muscles what to do. Although neurons comprise only 10% of brain cells, their functional and genomic integrity must be maintained over a lifetime. Most dividing cells in the body have well-defined checkpoint mechanisms to sense and correct DNA damage during DNA replication.

Neurons, however, do not divide. For this reason, they are at greater risk of accumulating damage and must develop alternative repair pathways to avoid dysfunction. Scientists do not understand how neuronal DNA damage is controlled in the absence of replication checkpoints.

A recent study led by Cynthia McMurray and Aris Polyzos in Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Molecular Biophysics and Integrated Bioimaging Division addressed this knowledge gap, shedding light on how DNA damage and repair occur in the brain. Their results suggest that DNA damage itself serves as the checkpoint, limiting the accumulation of genomic errors in cells during natural aging. The paper, published in Nature Communications, offers clues to understanding the potential role of unrepaired DNA damage in the progression of neurodegenerative diseases and could help inform the development of therapies.

Team makes sustainable aviation fuel additive from recycled polystyrene

Illinois Sustainable Technology Center research scientist Hong Lu and his colleagues developed a method for converting waste polystyrene into a sustainable jet fuel additive, ethylbenzene. Their work overcomes a key obstacle to the wider use of sustainable aviation fuels.
Photo Credit: Fred Zwicky

A new study overcomes a key challenge to switching commercial aircraft in the U.S. from their near-total reliance on fossil fuels to more sustainable aviation fuels. The study details a cost-effective method for producing ethylbenzene — an additive that improves the functional characteristics of sustainable aviation fuels — from polystyrene, a hard plastic used in many consumer goods. 

The findings are reported in the journal ACS Sustainable Chemistry and Engineering.  

Fuels derived from waste fat, oil, grease, plant biomass or other nonpetroleum sources lack sufficient levels of aromatic hydrocarbons, which help keep fuel systems operational by lubricating mechanical parts and swelling the seals that protect from leaks during normal operations, said Hong Lu, a research scientist at the Illinois Sustainable Technology Center who led the new research. ISTC is a division of the Prairie Research Institute at the University of Illinois Urbana-Champaign. 

While ethylbenzene is an aromatic hydrocarbon and can be derived from fossil fuels, finding a sustainable way to produce it would aid the aviation industry’s conversion to sustainable jet fuels. 

Chornobyl Dogs’ Genetic Differences Not Due to Mutation

Photo Credit: Norman Kleiman

Radiation-induced mutation is unlikely to have induced genetic differences between dog populations in Chornobyl City and the nearby Chornobyl Nuclear Power Plant (NPP), according to a new study in PLOS ONE from North Carolina State University and Columbia University Mailman School of Public Health. The study has implications for understanding the effects of environmental contamination on populations over time.

“We have been working with two dog populations that, while separated by just 16 kilometers, or about 10 miles, are genetically distinct,” says Matthew Breen, Oscar J. Fletcher Distinguished Professor of Comparative Oncology Genetics at NC State. “We are trying to determine if low-level exposure over many years to environmental toxins such as radiation, lead, etcetera, could explain some of those differences.” Breen is the corresponding author of the study.

Previously, the team had analyzed genetic variants distributed across the genome and identified 391 outlier regions in the dogs that differed between the two populations. Some of these regions contained genes associated specifically with repair of DNA damage. In this new study, the researchers conducted a deeper dive into the genomes of the dogs to detect evidence of mutations that may have accumulated over time.

Sunday, January 12, 2025

New data on atmosphere from Earth to the edge of space

Clouds in Antarctica.
Our weather is influenced by many factors, at ground level (such as mountains and human activity), interactions in our atmosphere, and space (such as auroras and magnetic fields).
Photo Credit: © Kaoru Sato

A team led by researchers at the University of Tokyo have created a dataset of the whole atmosphere, enabling new research to be conducted on previously difficult-to-study regions. Using a new data-assimilation system called JAGUAR-DAS, which combines numerical modeling with observational data, the team created a nearly 20-yearlong set of data spanning multiple levels of the atmosphere from ground level up to the lower edges of space. Being able to study the interactions of these layers vertically and around the globe could improve climate modeling and seasonal weather forecasting. There is also potential for interdisciplinary research between atmospheric scientists and space scientists, to investigate the interplay between space and our atmosphere and how it affects us on Earth.

Complaining about the weather, and about weather forecasters when they get things wrong, is a popular pastime for many. But a meteorologist’s job is not easy. Our atmosphere is multilayered, interconnected and complex, and global climate change is making it even harder to forecast both long-term and sudden, extreme weather events.

One Step Coating Could Save Lives and Property

Image Credit: Rachel Barton/Texas A&M Engineering Communications

Although extremely flammable, cotton is one of the most commonly used textiles due to its comfort and breathable nature. However, in a single step, researchers from Texas A&M University can reduce the flammability of cotton using a polyelectrolyte complex coating. The coating can be tailored for various textiles, such as clothing or upholstery, and scaled using the common pad-dry coating process, which is suitable for industrial applications. This technology can help to save property and lives on a large scale. 

“Many of the materials in our day-to-day lives are flammable, and offering a solution to protect from fire benignly is difficult,” said Maya D. Montemayor, a graduate student in the Department of Chemistry at Texas A&M and the publication’s lead author. “This technology can be optimized to quickly, easily and safely flame retard many flammable materials, offering vast protection in everyday life, saving money and lives of the general population.” 

Current studies developing flame retardant coatings deposited via polyelectrolyte complexation require two or more steps, increasing the time and cost to coat a material effectively. 

New study identifies how blood vessel dysfunction can worsen chronic disease

OHSU researchers have uncovered how specialized cells surrounding small blood vessels, known as perivascular cells, contribute to blood vessel dysfunction in chronic diseases such as cancer, diabetes and fibrosis. The findings could change how these diseases are treated.
Photo Credit: OHSU/Christine Torres Hicks

Researchers at Oregon Health & Science University have uncovered how specialized cells surrounding small blood vessels, known as perivascular cells, contribute to blood vessel dysfunction in chronic diseases such as cancer, diabetes and fibrosis. The findings, published in Science Advances, could change how these diseases are treated.

The study, led by Luiz Bertassoni, D.D.S., Ph.D., founding director of the Knight Cancer Precision Biofabrication Hub and a professor at the OHSU Knight Cancer Institute and the OHSU School of Dentistry, shows that perivascular cells sense changes in nearby tissues and send signals that disrupt blood vessel function, worsening disease progression.

Thursday, January 9, 2025

SwRI models pluto-charon formation scenario that mimics earth-moon system

Using advanced models, SwRI led new research that indicates that the formation of Pluto and Charon may parallel that of the Earth-Moon system. In the resulting 'kiss-and-captureâ regime, Pluto and Charon collide and stick together in the shape of a snowman. They rotate as one body until Pluto pushes Charon out into a stable orbit.
Image Credit: Courtesy of SwRI/Adeene Denton/Robert Melikyan

A NASA postdoctoral researcher at Southwest Research Institute has used advanced models that indicate that the formation of Pluto and Charon may parallel that of the Earth-Moon system. Both systems include a moon that is a large fraction of the size of the main body, unlike other moons in the solar system. The scenario also could support Pluto’s active geology and possible subsurface ocean, despite its location at the frozen edge of the solar system.

“We think the Earth-Moon system initiated when a Mars-sized object hit the Earth and led to the formation of our large Moon sometime later,” said Dr. Adeene Denton, who led the research, published in Nature Geoscience. “In comparison, Mars has two tiny moons that look like potatoes, while the moons of the giant planets make up a small fraction of their total systems.”

Scientists engineer CRISPR enzymes that evade the immune system

Image Credit: Natalie Velez, Broad Communications

The core components of CRISPR-based genome-editing therapies are bacterial proteins called nucleases that can stimulate unwanted immune responses in people, increasing the chances of side effects and making these therapies potentially less effective. 

Researchers at the Broad Institute of MIT and Harvard and Cyrus Biotechnology have now engineered two CRISPR nucleases, Cas9 and Cas12, to mask them from the immune system. The team identified protein sequences on each nuclease that trigger the immune system and used computational modeling to design new versions that evade immune recognition. The engineered enzymes had similar gene-editing efficiency and reduced immune responses compared to standard nucleases in mice.

Appearing today in Nature Communications, the findings could help pave the way for safer, more efficient gene therapies. The study was led by Feng Zhang, a core institute member at the Broad and an Investigator at the McGovern Institute for Brain Research at MIT.

“As CRISPR therapies enter the clinic, there is a growing need to ensure that these tools are as safe as possible, and this work tackles one aspect of that challenge,” said Zhang, who is also a co-director of the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics, the James and Patricia Poitras Professor of Neuroscience, and a professor at MIT. He is an Investigator at the Howard Hughes Medical Institute.

Researchers find dialysis ‘astonishingly effective’ for treating wastewater

Menachem Elimelech and Yuanmiaoliang “Selina” Chen.
Photo Credit: Gustavo Raskosky/Rice University

Researchers at Rice University, in collaboration with Guangdong University of Technology, have uncovered an innovative approach to treating high-salinity organic wastewaters — streams containing both elevated salt and organic concentrations — by employing dialysis, a technology borrowed from the medical field.

For patients with kidney failure, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood; blood is drawn from the body, cleansed in the dialyzer then returned through a separate needle or tube.

In a new study published in Nature Water, the team found that mimicking this same method can separate salts from organic substances with minimal dilution of the wastewater, simultaneously addressing key limitations of conventional methods. This novel pathway has the potential to reduce environmental impacts, lower costs and enable the recovery of valuable resources across a range of industrial sectors.

Dense human population is linked to longer urban coyote survival

Urban Coyote
Photo Credit: David Torres

Tracking coyote movement in metropolitan areas shows the animals spend lots of time in natural settings, but a new study suggests the human element of city life has a bigger impact than the environment on urban coyote survival. 

Researchers monitoring coyotes in Chicago found that habitat – areas with relatively high levels of vegetation cover and low levels of human infrastructure – did not influence coyote survival in positive or negative ways. Instead, areas densely populated with humans were associated with longer coyote lifespans. 

“What we found was really interesting, in that the societal characteristics seem to play a much more important role in predicting coyote survival time than the environmental characteristics,” said Emily Zepeda, first author of the study and a postdoctoral scholar in the School of Environment and Natural Resources at The Ohio State University. 

“And then we found this positive effect of human population density on survival time. Both of those things are unexpected because we usually associate human activity with detrimental effects on wildlife.” 

The study was published recently in the journal Urban Ecosystems

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles