. Scientific Frontline

Thursday, January 30, 2025

Conservation paradox: Invasive species are often threatened in their native range

The wild rabbit is endangered in its native Europe. In other parts of the world, such as Australia, this species has been introduced and has large populations.
Photo Credit: ©Alexis Lours

Non-native animals are a threat to biodiversity, yet many are themselves threatened with extinction in their areas of origin

Non-native species introduced by humans are among the main causes of global species decline – they were partly responsible for 60 percent of the species that have become extinct worldwide in recent decades. In Central Europe, non-native mammals include species such as the Norway rat, the mouflon and the mink. Now a study led by biologists from the University of Vienna and La Sapienza University in Rome shows that some of these species introduced by humans are themselves endangered in their native range. The study has been published in the current issue of the journal Conservation Letters.

The globalization of the earth is contributing to the introduction of many animal and plant species into new parts of the world. Invasive species can displace native species through competition or transmit new diseases. At the same time, however, some of these non-native species are threatened with extinction in their native ranges. This creates a conservation paradox – because the question now is, should non-native occurrences of species that are endangered in their native range be protected or controlled? However, it was previously unknown how many non-native mammal species this paradox actually applies to. In the new study, the scientists have now quantified this in order to come one step closer to an answer to this paradox.

Wednesday, January 29, 2025

Demystifying Space Weather

SDO 304Å

Space weather has become increasingly important in our modern world due to our growing reliance on technology. It can impact various aspects of our daily lives, from communication and navigation systems to power grids and even astronaut safety. In this deep dive, we'll explore the intricacies of space weather, its causes, its effects, and why understanding it is crucial in our technology-dependent society.

Space weather is a dynamic and ever-changing phenomenon that has significant implications for our technology-dependent world. From disrupting communication and navigation systems to causing power outages and posing radiation hazards to astronauts, space weather events can have far-reaching consequences. While predicting space weather accurately remains a challenge, ongoing research and improved monitoring capabilities are crucial for mitigating potential risks. By understanding the causes and effects of space weather, we can better prepare for these events and protect our critical infrastructure and space-based assets. As we continue to explore and utilize space, space weather awareness and preparedness will become increasingly important for ensuring the safety and sustainability of our technological advancements and space exploration endeavors.

Chemical looping turns environmental waste into fuel

As scientists search for sustainable alternatives to typical waste disposal methods, chemical looping technology promises to spawn a new energy cycle.
Photo Credit: Chokniti Khongchum

Turning environmental waste into useful chemical resources could solve many of the inevitable challenges of our growing amounts of discarded plastics, paper and food waste, according to new research. 

In a significant breakthrough, researchers from The Ohio State University have developed a technology to transform materials like plastics and agricultural waste into syngas, a substance most often used to create chemicals and fuels like formaldehyde and methanol. 

Using simulations to test how well the system could break down waste, scientists found that their approach, called chemical looping, could produce high-quality syngas in a more efficient manner than other similar chemical techniques. Altogether, this refined process saves energy and is safer for the environment, said Ishani Karki Kudva, lead author of the study and a doctoral student in chemical and biomolecular engineering at Ohio State. 

Sikorsky Begins Black Hawk® Ground Runs With U.S. Army T901 Improved Turbine Engines

Sikorsky started ground runs on a UH-60M Black Hawk equipped with two Improved Turbine Engines. This engine increases the Black Hawk's combat capabilities.
Photo Credit: Courtesy Sikorsky, a Lockheed Martin company. ©Lockheed Martin Corporation.

Sikorsky, a Lockheed Martin company started its first-ever ground runs on a UH-60M Black Hawk® helicopter equipped with two GE Aerospace T901 Improved Turbine Engines (ITE). During this test, the T901 engine demonstrated its capabilities through a series of rigorous procedures. The initial light off and ground runs were executed by a combined U.S. Army and industry test team and operated by Army and Sikorsky pilots.

“Soldiers will rely on Black Hawk helicopters well into the future, and upgrades to the aircraft today will pay dividends for decades, enabling new missions such as deploying and managing launched effects,” said Hamid Salim, vice president of Army and Air Force Systems at Sikorsky. “A modernized Black Hawk fleet will create new operational opportunities for the Army by extending the capabilities of a proven, fielded fleet to travel farther on less fuel and with more troops and cargo.”

First flight of the ITE-equipped Black Hawk is anticipated this year.

Even Quantum Physics Obeys the Law of Entropy

Image Credit: Courtesy of Technische Universität Wien

Is there a contradiction between quantum theory and thermodynamics? On the surface, yes - but at TU Wien, researchers have now shown how the two fit together perfectly.

It is one of the most important laws of nature that we know: The famous second law of thermodynamics says that the world gets more and more disordered when random chance is at play. Or, to put it more precisely: That entropy must increase in every closed system. Ordered structures lose their order, regular ice crystals turn into water, porcelain vases are broken up into shards. At first glance, however, quantum physics does not really seem to adhere to this rule: Mathematically speaking, entropy in quantum systems always remains the same.

A research team at TU Wien has now taken a closer look at this apparent contradiction and has been able to show: It depends on what kind of entropy you look at. If you define the concept of entropy in a way that it compatible with the basic ideas of quantum physics, then there is no longer any contradiction between quantum physics and thermodynamics. Entropy also increases in initially ordered quantum systems until it reaches a final state of disorder.

Blood-powered toes give salamanders an arboreal edge


Wandering salamanders are known for gliding high through the canopies of coastal redwood forests, but how the small amphibians stick their landing and take-off with ease remains something of a mystery.

A new study in the Journal of Morphology reveals the answer may have a lot to do with a surprising mechanism: blood-powered toes. The Washington State University-led research team discovered that wandering salamanders (Aneides vagrans) can rapidly fill, trap, and drain the blood in their toe tips to optimize attachment, detachment and general locomotion through their arboreal environment.

The research not only uncovers a previously unknown physiological mechanism in salamanders but also has implications for bioinspired design. Insights into salamander toe mechanics could ultimately inform the development of adhesives, prosthetics, and even robotic appendages.

“Gecko-inspired adhesives already allow surfaces to be reused without losing stickiness,” said Christian Brown, lead author of the study and an integrative physiology and neuroscience postdoctoral researcher at WSU. “Understanding salamander toes could lead to similar breakthroughs in attachment technologies.”

Hidden ‘highways’ connect Brazil’s rainforests

An Inga tree (I. affinis) growing alongside a river in the Cerrado savanna region of central Brazil.
Photo Credit RT Pennington

Forests flanking Brazil’s rivers act as “highways” that have allowed tree species to move between the Amazon and Atlantic rainforests for millions of years, new research shows.

The two rainforests are separated by hundreds of miles of dry forest and savanna, where most rainforest trees cannot survive.

Until now, it was thought that tree species only passed between the Amazon and the Atlantic forests during periods long ago when the climate was wetter and much of South America was covered in rainforest.

But the new study – led by the Royal Botanic Garden Edinburgh (RBGE) and the University of Exeter – reveals a different story.

“Rather than tree species being exchanged during specific wetter periods in the past, we found that species have dispersed consistently over time,” said Dr James Nicholls, of RBGE.

“This probably happens slowly, by generations of trees growing along the ‘highways’ provided by rivers that run through Brazil’s dry ecosystems.”

Tuesday, January 28, 2025

UQ team finds relative of deadly Hendra virus in the US

A northern short-tailed shrew
Photo Credit: RPN

Researchers at The University of Queensland have identified the first henipavirus in North America. 

Dr Rhys Parry from the School of Chemistry and Molecular Biosciences said Camp Hill virus was confirmed in shrews in the US state of Alabama.

“Henipaviruses have caused serious disease and death in people and animals in other regions,” Dr Parry said

“One of the most dangerous is the Hendra virus, which was first detected in Brisbane, Australia and has a fatality rate of 70 per cent.

“Another example is Nipah virus which has recorded fatality rates between 40 and 75 per cent in outbreaks in South-East Asia, including in Malaysia and Bangladesh.

“The discovery of a henipavirus in North America is highly significant, as it suggests these viruses may be more globally distributed than previously thought.”

Neutrons reveal lithium flow could boost performance in solid-state battery

Scientists from Duke University and ORNL used neutron scattering to see how lithium ions, represented by the glowing orbs, move through a diffusion gate, represented by the gold triangle, in a solid-state electrolyte.
Image Credit: Phoenix Pleasant/ORNL, U.S. Dept. of Energy

A team of scientists led by a professor from Duke University discovered a way to help make batteries safer, charge faster and last longer. They relied on neutrons at the Department of Energy’s Oak Ridge National Laboratory to understand at the atomic scale how lithium moves in lithium phosphorus sulfur chloride (Li6PS5Cl), a promising new type of solid-state battery material known as a superionic compound. 

Using neutrons at ORNL’s Spallation Neutron Source (SNS), and machine-learned molecular dynamics simulations at the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, they found that lithium ions easily diffused in the solid material, as they do in liquid electrolytes, allowing faster, safer charging. The results, published in Nature Physics, could bring the best of both worlds for solid-state electrolytes, or SSEs, enabling next-generation batteries.  

“Our research was about figuring out what is going on inside these materials using the power of neutron scattering and large-scale computer simulations,” said Olivier Delaire, associate professor of mechanical engineering, materials science, chemistry and physics at Duke University. Delaire arrived at ORNL in 2008 as a Clifford G. Shull Fellow and won DOE’s Office of Science Early Career Award in 2014. Today, he leads a research group at Duke dedicated to investigating the atomic structure and dynamics of energy materials.

Plant-based substitute for fossil fuels developed for plastic foams

Ziqi Yu (Postdoc), Isaac Nartey Oduro (PhD student) and Daniela Gonzalez- Sepulveda (undergraduate RA) are examining lignin-based polyurethane samples.
Photo Credit: Courtesy of Washington State University

An environmentally-friendly preparation of plant material from pine could serve as a substitute for petroleum-based chemicals in polyurethane foams.

The innovation could lead to more environmentally friendly versions of foams used ubiquitously in products such as kitchen sponges, foam cushions, coatings, adhesives, packaging and insulation. The global market for polyurethane totaled more than $75 billion in 2022.

A Washington State University-led research team used an environmentally-friendly preparation of lignin as a substitute for 20% of the fossil fuel-based chemicals in the foam. The bio-based foam was as strong and flexible as typical polyurethane foam. They report on their work in the journal, ACS Sustainable Chemistry and Engineering.

 “It’s quite novel in terms of the material we generate and the process we have,” said Xiao Zhang, corresponding author on the paper and professor in the Gene and Linda Voiland School of Chemical Engineering and Bioengineering. “Our extracted lignin offers a new class of renewable building blocks for the development of bio-based value-added products.”

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles