. Scientific Frontline

Thursday, February 6, 2025

Improved Brain Decoder Holds Promise for Communication in People with Aphasia

Brain activity like this, measured in an fMRI machine, can be used to train a brain decoder to decipher what a person is thinking about. In this latest study, UT Austin researchers have developed a method to adapt their brain decoder to new users far faster than the original training, even when the user has difficulty comprehending language.
Image Credit: Jerry Tang/University of Texas at Austin.

People with aphasia — a brain disorder affecting about a million people in the U.S. — struggle to turn their thoughts into words and comprehend spoken language.

A pair of researchers at The University of Texas at Austin has demonstrated an AI-based tool that can translate a person’s thoughts into continuous text, without requiring the person to comprehend spoken words. And the process of training the tool on a person’s own unique patterns of brain activity takes only about an hour. This builds on the team’s earlier work creating a brain decoder that required many hours of training on a person’s brain activity as the person listened to audio stories. This latest advance suggests it may be possible, with further refinement, for brain computer interfaces to improve communication in people with aphasia.

“Being able to access semantic representations using both language and vision opens new doors for neurotechnology, especially for people who struggle to produce and comprehend language,” said Jerry Tang, a postdoctoral researcher at UT in the lab of Alex Huth and first author on a paper describing the work in Current Biology. “It gives us a way to create language-based brain computer interfaces without requiring any amount of language comprehension.”

Genetic diversity is on the decline, but this trend can be slowed

Photo Credit: Tomáš Malík

Genetic diversity is crucial to the ability of animals and plants to adapt to changes in the climate and environment. A major international meta-analysis, published in the journal Nature, shows that genetic diversity is declining globally. But there is hope – effective conservation measures can slow this trend.

For a species to adapt to changes in its environment, a high degree of genetic variation between individual entities is crucial. The greater the diversity, the more likely it is that certain genes will make, for example, a plant more resistant to drought or an animal better adapted to higher temperatures. These genes can then be passed on to future generations and contribute to the survival of the species.

An international research team that includes Uppsala University, Stockholm University and the Swedish Environmental Protection Agency has analyzed genetic changes in 628 species over a period of more than 30 years. The study is based on data from more than 80,000 scientific papers and shows that genetic diversity is declining globally, especially among birds and mammals. At the same time, there are conservation measures that have proven to be effective.

“Overall, the study shows that there are effective conservation methods and data that allow for strategic targeting of actions. But then the genetic component needs to be considered,” says Sara Kurland, Postdoctoral Fellow at the Department of Earth Sciences and one of the researchers behind the study.

New technology lights way for accelerating coral reef restoration

Improving coral feeding habits can have a positive domino effect on the marine ecosystem.
Photo Credit: Francesco Ungaro

Scientists have developed a novel tool designed to protect and conserve coral reefs by providing them with an abundance of feeding opportunities. 

The device, dubbed the Underwater Zooplankton Enhancement Light Array (UZELA), is an autonomous, programmable underwater light that works to draw in nearby zooplankton, microscopic organisms that coral feed on. 

After testing the submersible on two species of coral native to Hawaii over six months, researchers found that UZELA could greatly enhance local zooplankton density and increase the feeding rates of both healthy and bleached coral. Importantly, providing coral with greater amounts of food makes them stronger and more likely to be resilient against certain environmental threats, like heat stress or ocean acidification.

This result is impressive, especially at a time when rising ocean temperatures are forcing entire coral reefs to the cusp of collapse, said

Whale poop contains iron that may have helped fertilize past oceans

A blue whale photographed in September 2010.
Photo Credit: NOAA

The blue whale is the largest animal on the planet. It consumes enormous quantities of tiny, shrimp-like animals known as krill to support a body of up to 100 feet (30 meters) long. Blue whales and other baleen whales, which filter seawater through their mouths to feed on small marine life, once teemed in Earth’s oceans. Then over the past century they were hunted almost to extinction for their energy-dense blubber.

As whales were decimated, some thought the krill would proliferate in predator-free waters. But that’s not what happened. Krill populations dropped, too, and neither population has yet recovered.

A recent theory proposes that whales weren’t just predators in the ocean environment. Nutrients that whales excreted may have provided a key fertilizer to these marine ecosystems.

Research led by University of Washington oceanographers supports that theory. It finds that whale excrement contains significant amounts of iron, a vital element that is often scarce in ocean ecosystems, and nontoxic forms of copper, another essential nutrient that in some forms can harm life.

The open-access study, the first to look at the forms of these trace metals in what’s commonly known as whale poop, was published in January in Communications Earth & Environment.

Microplastics discovered in Antarctica

A view over the Ellsworth Mountains, West Antarctica.
Photo Credit: Steve Gibbs, BAS

Scientists have discovered microplastics in the snow near some of Antarctica’s deep field camps, revealing how far-reaching plastic pollution has become. While not new, it’s the first time these tiny pieces of plastic have been found in remote locations.

The study was conducted at field camps, at Union Glacier and Schanz Glacier (near the Ellsworth Mountains), where researchers were carrying out field work, and the South Pole where the US Antarctic Program has a research station. It is the first time a new and advanced technique has been used to detect microplastics as small as 11 micrometers (about the size of a red blood cell) in the snow in Antarctica. The study is published this week (6 February 2025) in the journal Science of the Total Environment.

The findings surprised the team as microplastics were found at concentrations ranging from 73 to 3,099 particles per liter of snow. Most of these particles (95%) were smaller than 50 micrometers (0.005 cm, the size of most human cells), suggesting previous studies may have underestimated the extent of microplastic pollution in the region due to less sensitive detection methods.

Previous methods involved hand-picking particles and fibers out of samples for laboratory analyses. However, the newer technique involves melting snow through filter paper and scanning this at a high resolution, using infrared spectroscopy, so any plastics above 11 micrometers can be identified.

Recycling the unrecyclable

Recovered carbon fibers.
This might look like something you’d see on the floor of a barber’s shop, but it’s actually a clump of reclaimed carbon fibers. Photo Credit: ©2025 Jin et al.
(CC-BY-ND)

Epoxy resins are coatings and adhesives used in a broad range of familiar applications, such as construction, engineering and manufacturing. However, they often present a challenge to recycle or dispose of responsibly. For the first time, a team of researchers, including those from the University of Tokyo, developed a method to efficiently reclaim materials from a range of epoxy products for reuse by using a novel solid catalyst.

There’s a high chance you are surrounded by epoxy compounds as you read this. They are used in electronic devices due to their insulating properties; clothing such as shoes due to their binding properties and physical robustness; building construction for the same reason; and even in aircraft bodies and wind turbine blades for their ability to contain strong materials such as carbon fibers or glass fibers. It’s hard to overstate the importance of epoxy products in the modern world. But for all their uses, they inevitably have a downside: Epoxy compounds are essentially plastics and prove difficult to deal with after their use or at the end of the life of an epoxy-containing product.

Mutations in two gene pairs point to a promising drug target in 5 percent of adult cancers

Illustration Credit: Natalie Velez, Broad Communications

Scientists from the Cancer Dependency Map (DepMap) at the Broad Institute of MIT and Harvard and Columbia University have discovered that about 5 percent of adult cancers rely heavily on a gene called PELO to survive and that disabling the gene kills those cancer cells. These cancers have mutations in one of two genes, FOCAD or TCC37.

The finding, described in Nature, is a new synthetic lethality — a pair of genetic changes that together kill cancer cells. The researchers say that PELO is a promising target, and that genetic testing could identify cancer patients with FOCAD or TCC37 mutations who would benefit from new PELO-targeting drugs.

“These cancers are a huge unmet medical need, because we don’t have effective drugs for them,” said Francisca Vazquez, co-senior author on the study along with postdoctoral researcher Edmond Chan, now an assistant professor at Columbia University. Vazquez is also director of DepMap, which systematically probes cancer cell lines for genetic vulnerabilities. 

“Targeting synthetic lethalities is a good way to expand the repertoire of tumors we’re able to treat,” Vazquez said. “This new synthetic lethality we found shows how powerful the DepMap datasets can be.”

Patricia Borck, a DepMap research scientist in Broad’s Cancer Program, is first author on the study.

Wednesday, February 5, 2025

Cutting edge technology shows promise in tackling deadly brain tumors

Delivering advanced gene-editing tools directly to the tumor site can improve the body’s defense against glioblastoma
Image Credit: Gemini

A new study led by Khuloud Al Jamal, Professor of Drug Delivery & Nanomedicine, has found an innovative strategy to combat glioblastoma (GB), a fast-growing and aggressive type of brain tumor.

GB is a brain tumor originating in the brain or spinal cord. Despite advances in cancer treatment, it can remain resistant to therapies, including immune checkpoint (ICP) blockade therapies. ICP blockade works by targeting specific proteins on immune or tumor cells to prevent tumors from evading the immune system. While effective in other cancers, this approach has shown limited success in treating GB. The is due to complex interactions between immune cells and glioblastoma stem cells (GSCs), which suppress the immune response and reduce the effectiveness of these therapies.

In the study, published in Advanced Science, Professor Al Jamal and her team revealed how they have taken a novel approach to overcome this challenge by focusing on the mesenchymal subtype of GSCs, which is particularly aggressive and therapy resistant. The study employed lipid nanoparticles (LNPs) — tiny, fat-based carriers — to transport CRISPR RNAs, an advanced gene-editing tool, to GSC and immune cells in therapeutically relevant tumor models. 

Spinal cord stimulation: A transformative option for chronic pain management

Image Credit: cottonbro studio

Chronic back and lower extremity pain are leading causes of disability worldwide, significantly impacting the quality of life and productivity of the patients affected by them. For these patients, spinal cord stimulation (SCS) — a non-pharmacological, neurostimulation treatment that involves the surgical implantation of electrodes and a power source to deliver electrical current to the spinal cord to reduce pain signals to the brain — offers an advanced, safe and minimally invasive treatment option.

SCS is not a new medical technology, but has evolved considerably since its introduction in the 1960s. “It was historically used for patients who had undergone spine surgery but continued to experience pain,” explains Jonathan Droessler, MD, a specialist in interventional physiatry at UCLA’s Department of Orthopedic Surgery.

“Today, it’s used for patients with intractable pain lasting more than six months.”

Tuesday, February 4, 2025

Cracks in Greenland Ice Sheet are growing, study finds

Crevasses at Store Glacier, a marine-terminating outlet glacier of the western Greenland Ice Sheet.
 Photo Credit: Tom Chudley (Durham University)

A new study published this week in Nature Geoscience reveals that in response to climate change, the Greenland Ice Sheet is developing significantly more surface crevasses in key regions – a change that may accelerate ice loss and contribute to rising sea levels.

The research was led by Thomas Chudley, a research assistant professor at Durham University and former research associate at The Ohio State University’s Byrd Polar and Climate Research Center. The study analyzed high-resolution 3D surface maps and found that crevasses – wedge-shaped fractures in ice – had significantly increased in size and depth at the ice sheet’s fast-flowing edges over the entire Greenland Ice Sheet between 2016 and 2021.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles