. Scientific Frontline

Tuesday, November 18, 2025

Researchers build bone marrow model entirely from human cells

Scanning electron microscopy image of the engineered 3D bone marrow tissue colonized with human blood cells (red).
Image Credit: Andrés García-García, University of Basel, Department of Biomedicine

Our body’s “blood factory” consists of specialized tissue made up of bone cells, blood vessels, nerves and other cell types. Now, researchers have succeeded for the first time in recreating this cellular complexity in the laboratory using only human cells. The novel system could reduce the need for animal experiments for many applications.

The bone marrow usually works quietly in the background. It only comes into focus when something goes wrong, such as in blood cancers. In these cases, understanding exactly how blood production in our body works, and how this process fails, becomes critical. 

Typically, bone marrow research relies heavily on animal models and oversimplified cell cultures in the laboratory. Now, researchers from the Department of Biomedicine at the University of Basel and University Hospital Basel have developed a realistic model of bone marrow engineered entirely from human cells. This model may become a valuable tool not only for blood cancer research, but also for drug testing and potentially for personalized therapies, as reported by a team of researchers led by Professor Ivan Martin and Dr Andrés García-García in the journal Cell Stem Cell

Floating solar panels show promise, but environmental impacts vary by location

The Canoe Brook Floating Solar Photovoltaic (FPV) project, the largest in the United States at the time of completion at 8.9 MW, is located on a water storage reservoir is New Jersey.
Photo Credit Prateek Joshi / NREL

Floating solar panels are emerging as a promising clean energy solution with environmental benefits, but a new study finds those effects vary significantly depending on where the systems are deployed.

Researchers from Oregon State University and the U.S. Geological Survey modeled the impact of floating solar photovoltaic systems on 11 reservoirs across six states. Their simulations showed that the systems consistently cooled surface waters and altered water temperatures at different layers within the reservoirs. However, the panels also introduced increased variability in habitat suitability for aquatic species.

“Different reservoirs are going to respond differently based on factors like depth, circulation dynamics and the fish species that are important for management,” said Evan Bredeweg, lead author of the study and a former postdoctoral scholar at Oregon State. “There’s no one-size-fits-all formula for designing these systems. It’s ecology - it’s messy.”

A new way to trigger responses in the body

Photo Credit: Courtesy of University of Tokyo

Researchers at the University of Tokyo developed an experimental method to induce a strong physiological response linked to psychological pressure by making participants aim for a streak of success in a task. Their findings suggest this approach reproduces pressurelike conditions in a laboratory setting more effectively than traditional methods, affording easier access to the study of this state. That in turn could open up research into how pressure influences human performance in physical and intellectual tasks.

Whether in an exam hall or on the field, to “crack” under pressure is a common trope. But what’s the reality behind this idea? It’s easy to assume that with greater pressure comes greater chance of losing your composure. To know, then, how to overcome this could yield greater performance benefits. But the path to study such ideas is far from simple. Being rigorous in the field of psychology is extremely difficult, as there are limitless factors that can impact different people in different ways. Previous experimental methods have been limited in that they failed to induce strong physiological arousal.

Monday, November 17, 2025

SwRI turbocharges its hydrogen-fueled internal combustion engine

SwRI has a multidisciplinary team dedicated to Hydrogen Energy Research initiatives to deploy decarbonization technologies across a broad spectrum of industries. In 2022, SwRI began modifying a heavy-duty natural gas-fueled engine to run on 100% hydrogen fuel, successfully demonstrated in 2024. SwRI continues to research, design and innovate on H2-ICE technology. 
Photo Credit: Southwest Research Institute

Southwest Research Institute (SwRI) has upgraded its hydrogen-powered heavy-duty internal combustion engine (H2-ICE) with a state-of-the-art turbocharger. The upgrades have significantly improved performance across the board, making the engine competitive with current long-haul diesel engines focused on fuel economy while maintaining near-zero tailpipe emissions.

In 2023, SwRI converted a traditional natural gas-fueled internal combustion engine to run solely on hydrogen fuel with minimal modifications. It was integrated into a Class-8 truck as part of the Institute’s H2-ICE project to demonstrate a cost-efficient hydrogen-fueled engine as an option for zero-tailpipe carbon dioxide heavy-duty transportation.

Entomology: In-Depth Description

Photo Credit: Lidia Stawinska

Entomology is the scientific study of insects, a branch of zoology. Its primary goals are to understand the biology, behavior, physiology, ecology, evolution, and classification of insects, as well as their interactions with humans, other organisms, and the environment.

A new angle of study for unveiling black hole secrets

The balloon-borne telescope XL-Calibur was launched on a six-day flight from the Swedish Space Corporation’s Esrange Space Center in July 2024. During that flight, the telescope took measurements from the black hole Cygnus X-1, located about 7,000 light-years away. WashU researchers will use those results to improve computer models for simulating and uncovering further mysteries of black holes.
Photo Credit: NASA/SSC

An international collaboration of physicists including researchers at Washington University in St. Louis has made measurements to better understand how matter falls into black holes and how enormous amounts of energy and light are released in the process.

The scientists pointed a balloon-borne telescope called XL-Calibur at a black hole, Cygnus X-1, located about 7,000 light-years from Earth. “The observations we made will be used by scientists to test increasingly realistic, state-of-the-art computer simulations of physical processes close to the black hole,” said Henric Krawczynski, the Wilfred R. and Ann Lee Konneker Distinguished Professor in Physics and a fellow at WashU’s McDonnell Center for the Space Sciences.

Disrupting bacterial "chatter" to improve human health

Computer-rendered split image of bacteria on a tooth surface. When microbial communication is “on”, disease-associated species grow (left). Disrupting this communication (right) promotes health-associated bacteria.
Image Credit: University of Minnesota

Like all living things, bacteria adapt to survive. Over time, bacteria have been developing resistance to common antibiotics and disinfectants, which poses a growing problem for healthcare and sanitation. However, many species of bacteria are beneficial and even essential for human health. What if there was a way to change the behavior of bacteria in the body to prevent illness and poor health outcomes? 

Bacteria are very “talkative.” Constant streams of communication, known as quorum sensing, occur between and among the 700 species of bacteria that live in a human mouth. A number of them communicate via special molecules called N-acyl homoserine lactones (AHLs). 

Wastewater from most countries favors non-resistant bacteria

Joakim Larsson, Professor at the Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, and director of CARe, Centre for Antibiotic Resistance Research.
Photo Credit: Johan Wingborg

A global study led by researchers at the Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Sweden shows that municipal wastewater is not always the breeding ground for antibiotic resistance it is often thought to be. By testing wastewater from 47 countries, the team found that while some samples could select for resistant E. coli, the majority instead selected against resistance. These insights reshape our understanding of when and where resistance is likely to evolve and spread. 

Municipal wastewater contains a large range of excreted antibiotics and has therefore long been suspected to be a spawning ground for antibiotic-resistant bacteria. Now, a study published in Nature Communications led by a team from the University of Gothenburg provides a more nuanced picture. 

Two-step flash Joule heating method recovers lithium‑ion battery materials quickly and cleanly

(From left) Shichen Xu, James Tour, Alex Lathem, Karla Silva and Ralph Abdel Nour.
Photo Credit: Jared Jones/Rice University

A research team at Rice University led by James Tour has developed a two-step flash Joule heating-chlorination and oxidation (FJH-ClO) process that rapidly separates lithium and transition metals from spent lithium-ion batteries. The method provides an acid-free, energy-saving alternative to conventional recycling techniques, a breakthrough that aligns with the surging global demand for batteries used in electric vehicles and portable electronics.

Published in Advanced Materials, this research could transform the recovery of critical battery materials. Traditional recycling methods are often energy intensive, generate wastewater and frequently require harsh chemicals. In contrast, the FJH-ClO process achieves high yields and purity of lithium, cobalt and graphite while reducing energy consumption, chemical usage and costs.

“We designed the FJH-ClO process to challenge the notion that battery recycling must rely on acid leaching,” said Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering. “FJH-ClO is a fast, precise way to extract valuable materials without damaging them or harming the environment.”

Oral insulin delayed onset of type 1 diabetes in some children with increased risk of the disease

Half of the participants received daily treatment with oral insulin, and the other half received placebo.
 Photo Credit: Kennet Ruona

An international team of researchers has investigated whether oral insulin can prevent early signs of type 1 diabetes and clinical diagnosis in children with an increased risk of developing the disease. Although treatment with oral insulin could not prevent development of diabetes-related autoantibodies, oral insulin delayed the rate of disease progression in children who developed such autoantibodies. The results from the POInT study are now published in The Lancet

The POInT study has investigated whether treatment with oral insulin can prevent diabetes-related autoantibodies and type 1 diabetes in children with an increased genetic risk of developing the disease. These autoantibodies are used as biomarkers for type 1 diabetes, and the presence of two or more autoantibodies is called early-stage type 1 diabetes. The international study includes 1,050 children from Sweden, Germany, Poland, Belgium and the United Kingdom. Half of the participants received daily treatment with oral insulin, and the other half received placebo during their first three years of life. In type 1 diabetes, the body’s immune system attacks the insulin-producing beta cells in the pancreas and destroys them. 

Featured Article

Nasal drops fight brain tumors noninvasively

Researchers at WashU Medicine have developed a noninvasive medicine delivered through the nose that successfully eliminated deadly brain tum...

Top Viewed Articles