. Scientific Frontline

Saturday, December 6, 2025

Receptors in mammary glands make livestock and humans inviting hosts for avian flu

Microscope-captured images of a mammary gland of a pig show the presence of influenza receptors. In the image on the left, receptors for avian influenza A are colored orange. In the image on the right, receptors for the type of influenza A that typically infects mammals are purple.
Image Credit: Dr. Tyler Harm/Iowa State University

An ongoing outbreak of highly pathogenic avian influenza has affected more than 184 million domestic poultry since 2022 and, since making the leap to dairy cattle in spring 2024, more than 1,000 milking cow herds. 

A new study led by Iowa State University researchers shows that the mammary glands of several other production animals – including pigs, sheep, goats, beef cattle and alpacas – are biologically suitable to harbor avian influenza, due to high levels of sialic acids.

“The main thing we wanted to understand in this study is whether there is potential for transmission among these other domestic mammals and humans, and it looks like there is,” said Rahul Nelli, the study’s lead author and a research assistant professor of veterinary diagnostic and production animal medicine.

New study reviews research linking probiotic and prebiotic supplements and skin health

Photo Credit: Christin Hume

Researchers from King’s College London and Yakult Science for Health have conducted a comprehensive review of existing research exploring how probiotic, prebiotic, and synbiotic supplements may influence skin health and disease.

The review mapped 516 studies from around the world examining the relationship between these supplements and various aspects of skin health, from general skin condition to the management of diseases such as atopic dermatitis, psoriasis, and acne. 

Our diet can influence skin health through its impact on the gut microbiome — the community of microorganisms living in our digestive tract. The concept of a gut–skin axis was first proposed nearly a century ago but has gained renewed attention in recent years, as growing evidence suggests that changes in gut microbes can affect skin condition and ageing. Probiotics, prebiotics, and synbiotics are thought to promote skin health by modifying the gut microbiome, which may in turn improve skin function and resilience. 

Memory research: How respiration shapes remembering

Recording of brain activity using EEG.
Photo Credit: © LMU / Johanna Weber

First and foremost, we breathe to absorb oxygen – but this vital rhythm could also have other functions. Over the past few years, a range of studies have shown that respiration influences neural processes, including the processing of stimuli and memory processes. LMU researchers led by Dr. Thomas Schreiner, leader of an Emmy Noether junior research group at the Department of Psychology, in collaboration with colleagues from the Max Planck Institute for Human Development in Berlin and the University of Oxford, have analyzed how respiration influences the retrieval of previously learned materials and recorded what happens in the brain during this process. 

For the experiment, 18 participants learned to associate 120 images with certain words. The participants were then asked to recall these associations and then asked to recall them again after a two-hour afternoon nap. While this was happening, the researchers recorded their breathing as well as their brain activity via EEG. 

Friday, December 5, 2025

Where the elements come from?

The chlorine and potassium needed to support planet formation and sustain life come from exploding stars.
Image Credit: JAXA

"Why are we here?" This is humanity's most fundamental and persistent question. Tracing the origins of the elements is a direct attempt to answer this at its deepest level. We know many elements are created inside stars and supernovae, which then cast them out into the universe, yet the origins of some key elements have remained a mystery. 

Chlorine and potassium, both odd-Z elements -- possessing an odd number of protons -- are essential to life and planet formation. According to current theoretical models, stars produce only about one-tenth of the amount of these elements observed in the universe, a discrepancy that has long puzzled astrophysicists. 

Soft Electronics That Shape-Shift

Vidhika Damani and assistant professor Laure Kayser inspect a sample of the reversible conductive hydrogel they developed for bioelectronics applications.
Photo Credit: Evan Krape

What if a doctor could inject an electricity-conducting liquid into the body, let it temporarily solidify to record nerve signals or jump-start healing, and then return it to liquid form for easy removal?

That vision is edging closer to reality. University of Delaware researchers have developed a reversible conductive hydrogel, a material that can alternate between liquid and gel states. The hydrogel is designed to serve as an interface between conventional electronics and the body’s tissues, offering promise for both injectable implants and wearable devices.

The research team, led by Laure Kayser, assistant professor of materials science and engineering at UD’s College of Engineering, describes the new material in Nature Communications.

Historical geography helps researchers solve 2,700-year old eclipse mystery

Artist’s interpretation of an ancient total solar eclipse. This illustration is based on artistic imagination and does not represent the exact appearance of the eclipse recorded in 709 BCE.
Image Credit: Kano Okada, Nagoya University
Based on an image by Phil Hart / NASA

Humanity’s earliest datable record for a total solar eclipse allows scientists to derive accurate measurements of Earth’s ancient rotation speed and provides independent validation of solar cycle reconstruction in the 8th century BCE.

An international team of researchers has used knowledge of historical geography to reexamine the earliest datable total solar eclipse record known to the scientific community, enabling accurate measurements of Earth’s variable rotation speed from 709 BCE. The researchers calculated how the Sun would have appeared from Qufu, the ancient Chinese capital of the Lu Duchy, during the total solar eclipse. Using this information, they analyzed the ancient description of what has been considered the solar corona—the dim outer atmosphere of the Sun visible to the naked eye only during total eclipses—and found that its morphology supports recent solar cycle reconstructions for the 8th century BCE. 

Their findings, published in Astrophysical Journal Letters, provide reliable new data about Earth’s rotation speed during this period and suggest the Sun was becoming more active after a long quiet period, independently confirming what other scientists have found using radiocarbon analysis. 

Researchers identify kidney sensor that helps control fluid balance

Rose Hill, Ph.D., second from left,studies sensory nerves within the kidneys at OHSU. Her new study identified a protein that acts as a pressure sensor in the kidneys, which helps the body control fluids and blood pressure. With her are lab team members: Taylor Krilanovich, Lily Schainker and Janelle Doyle.
 Photo Credit: OHSU/Christine Torres Hicks

A new study has identified a critical “pressure sensor” inside the kidney that helps the body control blood pressure and fluid levels. The finding helps explain how the kidneys sense changes in blood volume — something scientists for decades have known occurs but didn’t have a mechanistic explanation.

Researchers at Oregon Health & Science University and collaborating institutions discovered that a protein called PIEZO2 acts as a mechanical sensor in the kidney. When blood volume changes, this protein helps trigger the release of renin, a hormone that starts a chain reaction known as the renin-angiotensin-aldosterone system, or RAAS. The system is one of the body’s main tools for keeping blood pressure stable and making sure the body has the right balance of salt and water.

SwRI may have solved a mystery surrounding Uranus’ radiation belts

SwRI scientists compared space weather impacts of a fast solar wind structure (first panel) driving an intense solar storm at Earth in 2019 (second panel) with conditions observed at Uranus by Voyager 2 in 1986 (third panel) to potentially solve a 39-year-old mystery about the extreme radiation belts found. The "chorus wave" is a type of electromagnetic emission that may accelerate electrons and could have resulted from the solar storm.
Image Credit: Southwest Research Institute

Southwest Research Institute (SwRI) scientists believe they may have resolved a 39-year-old mystery about the radiation belts around Uranus. 

In 1986, when Voyager 2 made the first and only flyby of Uranus, it measured a surprisingly strong electron radiation belt at significantly higher levels than anticipated. Based on extrapolations from other planetary systems, Uranus’ electron radiation belt was off the charts. Since then, scientists have wondered how the Uranian system could support such an intense trapped electron radiation belt, at a planet unlike anything else in the solar system. 

A New Kind of Copper from the Research Reactor

In front of the nuclear reactor at TU Wien
Photo Credit: © TU Wien

The copper isotope Cu-64 plays an important role in medicine: it is used in imaging processes and also shows potential for cancer therapy. However, it does not occur naturally and must be produced artificially — a complex and costly process. Until now, Cu-64 has been generated by bombarding nickel atoms with protons. When a nickel nucleus absorbs a proton, it is transformed into copper. At TU Wien, however, a different pathway has now been demonstrated: Cu-63 can be converted into Cu-64 by neutron irradiation in a research reactor. This works thanks to a special trick — so-called “recoil chemistry.” 

New deep-sea species discovered during mining test

A small marine bristle worm. The group from the University of Gothenburg has been working with this species. It is one of the few species that is slightly more common in this area. The animal is about 1-2 mm long.
Photo Credit: Natural History Museum, London & Göteborgs Universitet

There is a high demand globally for critical metals, and many countries want to try extracting these sought-after metals from the seabed. An international study, which has discovered large numbers of new species at a depth of 4,000 meters, shows that such mining has less of a negative impact than expected. However, species diversity declined by a third in the tracks of the mining machine. 

In a major research project, marine biologists from several countries have attempted to map life in one of the least explored places on Earth: the deep-sea floor of the Pacific Ocean. 

Featured Article

What Is: An Ecosystem

The Holocoenotic Nature of the Biosphere Image Credit: Scientific Frontline / stock image The Genesis of a Paradigm   The concept of the eco...

Top Viewed Articles