. Scientific Frontline

Thursday, September 18, 2025

Decoding the selfish gene, from evolutionary cheaters to disease control

Malaysian stalk-eyed fly (Teleopsis dalmanni).
Photo Credit: Paul Richards

New research is shining a light on one of genetics’ enduring puzzles - how the workings of the so-called “selfish gene” could be harnessed to control harmful insect populations.

Scientists from the University of Sheffield have uncovered how to potentially control harmful insect populations by studying a "selfish gene" that manipulates inheritance

The new research focuses on meiotic drive, a process where a selfish gene gives itself a better chance of being passed on to the next generation, disrupting the normal 50/50 inheritance pattern

By studying the Malaysian stalk-eyed fly, researchers discovered that a selfish gene can damage rival sperm carrying a Y chromosome, leading to a population with far more females than males

Understanding this genetic mechanism could provide a new way to control insects that spread disease and cause food shortages by causing their populations to become unsustainably female-biased

Light-powered motor fits inside a strand of hair

The second gear from the right has an optical metamaterial that react to laserlight and makes the gear move. All gears are made in silica directly on a chip. Each gear is about 0.016 mm in diameter.
Photo Credit: Gan Wang

Researchers at the University of Gothenburg have made light-powered gears on a micrometer scale. This paves the way for the smallest on-chip motors in history, which can fit inside a strand of hair.

Gears are everywhere – from clocks and cars to robots and wind turbines. For more than 30 years, researchers have been trying to create even smaller gears in order to construct micro-engines. But progress stalled at 0.1 millimeters, as it was not possible to build the drive trains needed to make them move any smaller.

Researchers from Gothenburg University, among others, have now broken through this barrier by ditching traditional mechanical drive trains and instead using laser light to set the gears in motion directly.

Wolf protection downgrade highlights need for adaptive conservation frameworks

The protected category means greater flexibility in managing wolf populations
Photo Credit: Marcel Langthim

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: The European Parliament's decision to downgrade wolf status from "strictly protected" to "protected" exposes the rigidity of current conservation frameworks and demands a transition to adaptive management systems suited for recovered species.
  • Methodology: A collaborative study by the University of York and Stockholm Resilience Centre analyzed the policy shift and recommended a four-pillar approach—clear targets, adaptive tools, fair cost redistribution, and enhanced dialogue—published in Conservation Letters.
  • Key Data: Wolf populations in Europe surged by 58% over a single decade, marking a significant recovery alongside increases in brown bear, lynx, and wolverine numbers.
  • Significance: This legislative change sets a historic precedent for downlisting species in the EU, shifting focus from extinction prevention to managing coexistence and potential conflicts in human-dominated landscapes.
  • Future Application: The proposed framework calls for standardized "favorable conservation status" metrics, zoning strategies to manage conflict areas, and improved cross-border monitoring systems involving local stakeholders.
  • Branch of Science: Conservation Science and Environmental Policy
  • Additional Detail: Experts warn that successful coexistence depends on "social legitimacy," requiring that conservation burdens are not disproportionately placed on rural communities and that management is coordinated across national borders.

Shining a light on germs

Microbe hunters: Empa researchers Paula Bürgisser and Giacomo Reina from the Nanomaterials in Health laboratory in St. Gallen.
Photo Credit: Empa

Light on – bacteria dead. Disinfecting surfaces could be as simple as that. To turn this idea into a weapon against antibiotic-resistant germs, Empa researchers are developing a coating whose germicidal effect can be activated by infrared light. The plastic coating is also skin-friendly and environmentally friendly. A first application is currently being implemented for dentistry.

Antibiotic-resistant bacteria and emerging viruses are a rapidly increasing threat to the global healthcare system. Around 5 million deaths each year are linked to antibiotic-resistant germs, and more than 20 million people died during the COVID-19 virus pandemic. Empa researchers are therefore working on new, urgently needed strategies to combat such pathogens. One of the goals is to prevent the spread of resistant pathogens and novel viruses with smart materials and technologies.

Surfaces that come into constant contact with infectious agents, such as door handles in hospitals or equipment and infrastructure in operating theaters, are a particularly suitable area of application for such materials. An interdisciplinary team from three Empa laboratories, together with the Czech Palacký University in Olomouc, has now developed an environmentally friendly and biocompatible metal-free surface coating that reliably kills germs. The highlight: The effect can be reactivated again and again by exposing it to light.

Researchers Uncover a Major Shift in U.S. Landscape: ‘Wild’ Disturbances Are Overtaking Human-directed Changes

Disturbances like hurricanes and fires reshape the landscape and play vital roles in Earth’s systems, therefore, understanding what drives these kinds of disturbances is important for projecting what changes may be ahead.
Photo Credit: Malachi Brooks

If it feels like headlines reporting 100 or 1,000-year floods and mega fires seem more frequent these days, it’s not your imagination.

A project led by researchers from UConn’s Global Environmental Remote Sensing (GERS) Lab has yielded surprising insights into land disturbances and disasters in the United States since the late 1980s, including a shift in what drives those disturbances, and how they are increasing with frightening intensity and frequency. Their findings are published in Nature Geoscience.

The research is the result of a decade-long project to perform a CONterminous United States (CONUS)-wide disturbance agent classification and mapping project, explains GERS Director and Associate Professor in the Department of Natural Resources and the Environment in the College of Agriculture, Health and Natural Resources (CAHNR) Zhe Zhu. The ambitious project involved the careful analysis of Landsat satellite data spanning more than 40 years.

Disturbances like hurricanes and fires reshape the landscape and play vital roles in Earth’s systems; therefore, understanding what drives these kinds of disturbances is important for projecting what changes may be ahead.

Cosmic glass found only in Australia reveals ancient asteroid impact

The newly discovered tektites or ‘cosmic glass’.
Photo Credit: Et al. ‘Earth and Planetary Science Letters’

Curtin researchers have helped uncover evidence of a mysterious giant asteroid impact, hidden not in a crater but in tiny pieces of glass found only in Australia.

The discovery centers on rare tektites, which are natural glasses created when a space rock slams into Earth, melting surface material and hurling it hundreds or even thousands of kilometers. The newly discovered type of tektites has so far been found exclusively in an area mainly within South Australia.

Co-author Professor Fred Jourdan, from Curtin’s School of Earth and Planetary Sciences, said finding a new tektite field is like opening a fresh chapter in Earth’s violent geological past.

“These glasses are unique to Australia and have recorded an ancient impact event we did not even know about,” Professor Jourdan said.

Methane production may increase as Arctic lakes warm

 

Fältarbete vid sjöar nära Abisko naturvetenskapliga station.
Photo Credit: Sofia Kjellman

A warmer and wetter climate makes lakes more productive – which in turn leads to more methane being released from sediments. A new study involving Umeå University shows that Arctic lakes may contribute even more to the greenhouse effect in the future.

Methane is more than 25 times stronger as a greenhouse gas than carbon dioxide. Arctic lakes account for a significant share of global methane emissions, but until now, knowledge about the processes in northern lakes has been limited. An international team of researchers from Norway, Sweden and Spain has now shown that methane production varies greatly between lakes and is closely linked to their characteristics.

The researchers investigated ten lakes on Svalbard and in the subarctic region of Scandinavia, three of them via the Abisko Scientific Research Station. They found that most methane production occurs in the top ten centimeters of lake sediments, where there is abundant organic matter and favorable conditions for microbes.

Sandia team creates X-ray images of the future

Courtney Sovinec examines the multi-patterned target used to create a new type of X-ray image at Sandia National Laboratories.
Photo Credit: Vince Gasparich

When German physicist Wilhelm Röntgen discovered X-rays in the late 1800s while experimenting with cathode ray tubes, it was a breakthrough that transformed science and medicine. So much so that the basic concept remains in use today. But a team of researchers at Sandia National Laboratories believes they’ve found a better way, harnessing different metals and the colors of light they emit.

“It’s called colorized hyperspectral X-ray imaging with multi-metal targets, or CHXI MMT for short,” said project lead Edward Jimenez, an optical engineer. Jimenez has been working with materials scientist Noelle Collins and electronics engineer Courtney Sovinec to create X-rays of the future.

“With this new technology, we are essentially going from the old way, which is black and white, to a whole new colored world where we can better identify materials and defects of interest,” Collins said.

The team found they could achieve this using tiny, patterned samples of varied metals such as tungsten, molybdenum, gold, samarium and silver.

Wednesday, September 17, 2025

Stronger together: a new fusion protein boosts cancer immunotherapy

An immune cell (small, orange) attacking a cancer cell (large, dark red).
Image Credit: M Oeggerli (Micronaut 2019), M P Trefny, and A Zippelius, Translational Oncology, University Hospital Basel, supported by Pathology University Hospital Basel, and Bio-EM Lab, Biozentrum, University of Basel

A newly developed molecule brings together two powerful immunotherapy strategies in one treatment. Researchers at the University of Basel and University Hospital Basel have demonstrated that this fusion protein can both block the “do not attack” signal used by cancer cells and selectively activate tumor-fighting immune cells. This dual action could pave the way for more effective cancer therapies with fewer side effects.

Back in the early 1980s, Linda Taylor, just 33 years old, was diagnosed with advanced skin cancer and faced a grim prognosis. Luckily, she met Dr. Stephen Rosenberg from the National Cancer Institute in Bethesda, Maryland, who treated her with an experimental approach harnessing the body’s own immune system to fight the disease. In 1984, Taylor became the first patient ever to be cured through immunotherapy – a groundbreaking case that forever changed the landscape of cancer treatment.

That pioneering therapy relied on interleukin-2 (IL-2), a signaling molecule that activates many types of immune cells to attack tumors. IL-2 later became the first immunotherapy approved by the U.S. Food and Drug Administration (FDA). However, while effective, IL-2 therapy often causes severe side effects and can also stimulate regulatory T cells, which dampen the immune response instead of boosting it.

New Mars research reveals multiple episodes of habitability in Jezero Crater

Jerezo Carter: Mars 2020 Rover Landing Site
Image Credit: NASA/JPL-Caltech/MSSS/JHUAPL

New research using NASA’s Perseverance rover has uncovered strong evidence that Mars’ Jezero Crater experienced multiple episodes of fluid activity — each with conditions that could have supported life.

By analyzing high-resolution geochemical data from the rover, scientists have identified two dozen types of minerals, the building blocks of rocks, that help reveal a dynamic history of volcanic rocks that were altered during interactions with liquid water on Mars. The findings, published in the Journal of Geophysical Research: Planets, provide important clues for the search for ancient life and help guide Perseverance’s ongoing sampling campaign.

The study was led by Rice University graduate student Eleanor Moreland and employed the Mineral Identification by Stoichiometry (MIST) algorithm — a tool developed at Rice — to interpret data from Perseverance’s Planetary Instrument for X-ray Lithochemistry (PIXL). PIXL bombards Martian rocks with X-rays to reveal their chemical composition, offering the most detailed geochemical measurements ever collected on another planet, according to the study.

Measuring the quantum W state

Achieving the entanglement measurement of the W state
Image Credit: KyotoU / Takeuchi lab

The concept of quantum entanglement is emblematic of the gap between classical and quantum physics. Referring to a situation in which it is impossible to describe the physics of each photon separately, this key characteristic of quantum mechanics defies the classical expectation that each particle should have a reality of its own, which gravely concerned Einstein. Understanding the potential of this concept is essential for the realization of powerful new quantum technologies.

Developing such technologies will require the ability to freely generate a multi-photon quantum entangled state, and then to efficiently identify what kind of entangled state is present. However, when performing conventional quantum tomography, a method commonly used for state estimation, the number of measurements required grows exponentially with the number of photons, posing a significant data collection problem.

Woodrats’ dietary choices driven by constraints

A woodrat munches on a juniper berry.
Photo Credit: Sara Weinstein/USU

It’s not easy eating green, as most plants have chemical defenses to deter would-be grazers. Getting enough to eat, while minimizing exposure to toxins, is a persistent challenge that shapes an herbivore’s foraging choices. Do they boost their survival by eating a bit of everything, bypass biological booby traps by specializing on one plant or adapt their strategy as environmental conditions change?

The diversity of an animal’s diet—known as dietary niche breadth—is critical to a species’ resilience, yet it remains poorly understood in mammalian herbivores. In a new study, researchers report findings from an eight-year, large-scale survey exploring the dietary choices of a model herbivore, the woodrat (genus: Neotoma). By analyzing plant DNA in the rodents’ droppings, the scientists compared dietary breadth between individuals, within populations and across species of woodrats throughout North America.

Woodrats exhibited a wide spectrum of diet diversity that included both generalists and specialists. Species-level specialists stuck to narrow food niches, with little difference between individual diets. In contrast, generalist populations contained individuals with more varied diets. Even these individuals appeared to forage on a consistent subset of plants, which likely helps them to manage the risks of consuming potentially poisonous food.

Subtle cues between cells and immune system contribute to spread of cancer

Purdue University researcher John Tesmer is deciphering an intricate cell signaling system critical to immune response.
 Photo Credit: Alisha Willett / Purdue University

In the march of metastasis, a molecular trail of crumbs guides some cancer cells from the primary tumor to establish new colonies within the body. Blocking the cells’ ability to follow the trail might halt metastasis but could also meddle with an intricate cellular signaling system critical to immune response. Purdue University scientists are deciphering this signaling system to better understand how it could be used to address multiple diseases, including cancer.

Recent work, published in Nature, focused on a specific transaction inside the cell but is broadly applicable to how cells respond to signals from the endocrine system, a hormonal messaging system that influences metabolism, growth and reproduction and helps the body maintain homeostasis.

“There are multiple pathways inside a cell that are triggered by this messaging system and when they don’t work together properly, it promotes disease,” said research lead John Tesmer, the Walther Distinguished Professor in Cancer Structural Biology in the College of Science and a member of the Purdue Institute for Cancer Research. “Some of these pathways are useful, so ideally, we shouldn’t just turn off the signal at the source. But maybe we can find compounds that elicit a more nuanced response inside the cell, such as by preserving good pathways and dampening those that are bad.”

Coral reefs set to stop growing as climate warms

Dead reef crest on Mexico's Caribbean coast.
Photo Credit Chris Perry

Most coral reefs will soon stop growing and may begin to erode – and almost all will do so if global warming hits 2°C, according to a new study in the western Atlantic.

An international team, led by scientists from the University of Exeter, assessed 400 reef sites around Florida, Mexico and Bonaire.

The study, published in the journal Nature, projects that more than 70% of the region’s reefs will stop growing by 2040 – and over 99% will do so by 2100 if warming reaches 2°C or more above pre-industrial levels.

Climate change – along with other issues such as coral disease and deteriorating water quality – reduces overall reef growth by killing corals and impacting colony growth rates.

To understand how changing reef ecology is impacting reef growth potential – in other words, how the balance of living organisms translates into vertical “accretion” (reef-building) – the team analysed fossil reefs from across the tropical western Atlantic region to improve understanding of how reef growth rates vary depending on the types of coral present.

Tuesday, September 16, 2025

Sandy Seafloors: An Overlooked Source of Greenhouse Gas

Photo Credit: Walter Frehner

A new study reveals that methane can form in the upper layers of sandy seabeds — something that has taken scientists by surprise. Special microorganisms are at work, and the phenomenon may be happening along coastlines all over the world.  

Methane is a powerful greenhouse gas, produced in many natural environments by microorganisms.  

Until recently, scientists believed these microbes were intolerant of oxygen and could only survive in oxygen-free zones. But new research shows they can, in fact, persist in oxygenated environments — lying dormant until the oxygen disappears. That means an entirely new source of methane emissions has just been discovered.  

“We do not yet know how much methane these microbes are producing. That is the next big question. But we suspect the contribution is significant and widespread in sandy coastal zones. This is not something confined to a few isolated spots on the globe,” says Ronnie N. Glud, professor at the Department of Biology and an expert in biogeochemistry.  

Featured Article

What Is: The Psychology of Conspiracy Theories, Weaponization, and Societal Impact

Scientific Frontline: Extended "At a Glance" Summary The Core Concept : Conspiracy theories are alternative explanatory narratives...

Top Viewed Articles