. Scientific Frontline

Wednesday, June 14, 2023

Light pollution confuses coastal woodlouse

A woodlouse underwater.
Photo Credit: Martin Stjernstedt

Artificial night-time light confuses a color-changing coastal woodlouse, new research shows.

The sea slater is an inch-long woodlouse that lives around the high-tide line and is common in the UK and Europe.

Sea slaters forage at night and can change color to blend in and conceal themselves from predators.

The new study, by the University of Exeter, tested the effects of a single-point light source (which casts clear shadows) and “diffuse” light (similar to “skyglow” found near towns and cities).

While the single light did not interfere with the sea slaters’ camouflage, diffuse light caused them to turn paler while hiding on a dark background – making them more visible.

“With night skies getting brighter worldwide, it’s important to understand how this will affect the natural world,” said Kathryn Bullough, who led the study as part of her masters at the Centre for Ecology and Conservation on Exeter’s Penryn Campus in Cornwall.

“We know artificial light causes all sorts of negative effects for animals and plants, but our results show that shadow-casting light can have very different impacts to diffuse skyglow, even when both have the same overall brightness.

New insights into the origin of food sharing among humans

Chimpanzees Gremlin and son Grendel, begging for food, at Gombe National Park, Tanzania.
Photo Credit: Courtesy of University of Minnesota

As humans evolved to hunt, gather and share food, cooperation provided a key to our success as a species. While chimpanzees and other primates sometimes share food, humans stand out. As hunter-gatherers — the subsistence strategy that all humans followed until the invention of agriculture — our survival depended on daily sharing of food between unrelated adult males and females. 

While hunter-gatherers today depend heavily on hunting and cooking, long before these activities became important for our ancestors, species such as Australopithecus extracted foods such as roots, tubers and nuts. Since hunter-gatherers and nonhuman primates tend to share foods that are large, valuable and divisible, these nutrient-dense foods are likely candidates for sharing, and may have been susceptible to theft by hungry group members. 

In new research published in the Proceedings of the National Academy of Sciences (PNAS), a team led by College of Biological Sciences Professor Michael Wilson developed a conceptual and mathematical model of the evolution of food production and sharing in early human ancestors. The interdisciplinary team included an economist, a theoretical biologist, an anthropologist and a primatologist. 

A Novel Technique to Observe Colloidal Particle Degradation in Real Time

Height images of nanoplastics degrading in real time, captured using high-speed atomic force microscopy. The left side shows a particle containing water, and the right side shows a water-free particle.
Image Credit: Daisuke Suzuki from Shinshu University

Researchers develop an innovative approach using atomic force microscopy to shed light on the degradation of colloidal particles

Degradation of colloidal particles is a common occurrence in nature, be it removal of waste products from cells or the natural degradation of polymers, such as plastics, in the environment. Nanoplastics are a major environmental concern, but little is known about how they are created from plastics over time. Researchers from Shinshu University have now developed a novel approach that utilizes high-speed atomic force microscopy to observe, in real time, the course of degradation of colloidal particles.

In the early 2000s, scientists from the UK made a worrisome discovery that the oceans are teeming with small particles of plastic (less than one millimeter in length) due to the continuous degradation of plastic waste. These microscopic particles of plastic have become a major environmental concern. Scientists classify these small particles as either microplastics or nanoplastics based on their size; the latter term is used exclusively for particles smaller than one micrometer.

New way of identifying proteins supports drug development

The illustration shows how different areas of PRC2 protein (the one on the right side) binds to survivin. The color pixel diagram shows binding strength to survivin. The bright pink pixels are the strongest binders.
Illustration Credit: Atsarina Larasati Anindya

All living cells contain proteins with different functions, depending on the type of cell. Researchers at the University of Gothenburg have discovered a way to identify proteins without even looking at their structure. Their method is faster, easier and more reliable than previous methods.

Currently, the general view is that each protein’s structure is what controls its function in cells. The atomic sequences, meaning how the atoms are arranged in the proteins, create the protein’s structure and shape. But there are many proteins that lack a well-defined structure.

Researcher Gergely Katona has developed a new method where proteins are scanned based on the number of amino acids (or the number of different atoms) they contain in order to identify them and their function instead of identifying them based on their structure. With this scanning method, the researchers were able to predict relatively reliably which combination of amino acids is needed to bind to the protein survivin. The outcome was a reliability of about 80 per cent, which is better than when you use the protein’s primary structures for identification. The results are now published in the scientific journal iScience.

Tuesday, June 13, 2023

AI helps show how the brain’s fluids flow

A video shows a perivascular space (area within white lines) into which the researchers injected tiny particles. The particles (shown as moving dots) are trailed by lines which indicate their direction. Having measured the position and velocity of the particles over time, the team then integrated this 2D video with physics-informed neural networks to create an unprecedented high-resolution, 3D look at the brain’s fluid flow system.
Video Credit: Douglas Kelley

New research targets diseases including Alzheimer’s.

A new artificial intelligence-based technique for measuring fluid flow around the brain’s blood vessels could have big implications for developing treatments for diseases such as Alzheimer’s.

The perivascular spaces that surround cerebral blood vessels transport water-like fluids around the brain and help sweep away waste. Alterations in the fluid flow are linked to neurological conditions, including Alzheimer’s, small vessel disease, strokes, and traumatic brain injuries but are difficult to measure in vivo.

A multidisciplinary team of mechanical engineers, neuroscientists, and computer scientists led by University of Rochester Associate Professor Douglas Kelley developed novel AI velocimetry measurements to accurately calculate brain fluid flow. The results are outlined in a study published by Proceedings of the National Academy of Sciences.

Next Generation Experimental Aircraft Becomes NASA’s Newest X-Plane

The X-66A is the X-plane specifically aimed at helping the United States achieve the goal of net-zero greenhouse gas emissions by 2050. To build the X-66A, Boeing will work with NASA to modify an MD-90 aircraft, shortening the fuselage and replacing its wings and engines. The resulting demonstrator aircraft will have long, thin wings with engines mounted underneath and a set of aerodynamic trusses for support. The design, which Boeing submitted for NASA’s Sustainable Flight Demonstrator project, is known as a Transonic Truss-Braced Wing.
Full Size Image
Image Credits: NASA

NASA and Boeing said Monday the aircraft produced through the agency’s Sustainable Flight Demonstrator project has been designated by the U.S. Air Force as the X-66A.

The new X-plane seeks to inform a potential new generation of more sustainable single-aisle aircraft – the workhorse of passenger airlines around the world. Working with NASA, Boeing will build, test, and fly a full-scale demonstrator aircraft with extra-long, thin wings stabilized by diagonal struts, known as a Transonic Truss-Braced Wing concept.

“At NASA, our eyes are not just focused on stars but also fixated on the sky. The Sustainable Flight Demonstrator builds on NASA’s world-leading efforts in aeronautics as well climate,” said NASA Administrator Bill Nelson. “The X-66A will help shape the future of aviation, a new era where aircraft are greener, cleaner, and quieter, and create new possibilities for the flying public and American industry alike.”

The X-66A is the first X-plane specifically focused on helping the United States achieve the goal of net-zero aviation greenhouse gas emissions, which was articulated in the White House’s U.S. Aviation Climate Action Plan.

High-performing alloy developed to help harness fusion energy

The research team demonstrated that minor additions of hafnium into the WTaCrV high entropy alloy lead to higher radiation resistance.
Photo credit: Courtesy of Los Alamos National Laboratory

A newly developed tungsten-based alloy that performs well in extreme environments similar to those in fusion reactor prototypes may help harness fusion energy.

“The new alloy shows promising resistance to irradiation resistance and stability under the high temperatures and extreme irradiation environments used to represent a fusion-reactor environment,” said Osman El Atwani, a staff scientist at Los Alamos National Laboratory. “The development of this alloy, and the agreement between modeling and experimentation that it represents, points the way toward the development of further useful alloys, an essential step in making fusion power generation more robust, cost-effective, economically predictable and attractive to investors.”

As fusion energy concepts move closer to the real world, solving the materials challenge is imperative. The encouraging results indicate that a design paradigm, as described by El Atwani and his collaborators, and high entropy alloys may be ready to play their role in harnessing the promise of fusion.

El Atwani was the principal investigator for the project, which involved several national and international institutions. Their results were published in Nature Communications.

UC Irvine neuroscientists develop ‘meta-cell’ to move Alzheimer’s fight forward

A research team led by Vivek Swarup, UCI assistant professor of neurobiology and behavior, has developed a new process for creating a “meta-cell” that will advance the understanding of gene processes within individual cells.
Photo Credit: UCI School of Biological Sciences

University of California, Irvine neuroscientists probing the gene changes behind Alzheimer’s disease have developed a process of making a “meta-cell” that overcomes the challenges of studying a single cell. Their technique has already revealed important new information and can be used to study other diseases throughout the body.

Details about the meta-cell – created by researchers with the UCI Institute for Memory Impairments and Neurological Disorders, known as UCI MIND – were published in the online journal Cell Press.

Technologies called transcriptomics that study sets of RNA within organisms enable scientists to understand what each cell does. However, the question of how particular genes work within a solo cell, a process known as single-cell genomics, has not been widely studied. As a result, it has still been difficult to determine which genes are associated with disease or carrying out normal functions.

“The challenge is that a single cell does not contain much RNA,” said first author Samuel Morabito, a UCI graduate student researcher in the mathematical, computational and systems biology program. “This sparsity makes it hard to study. Even if a gene is present, technology might miss it.”

Pass the salt: This space rock holds clues as to how Earth got its water

Asteroid Itokawa as seen by the Hayabusa spacecraft. The peanut-shaped S-type asteroid measures approximately 1,100 feet in diameter and completes one rotation every 12 hours.
Photo Credit: JAXA

The discovery of tiny salt grains in an asteroid sample brought to Earth by the Japanese Hayabusa spacecraft provides strong evidence that liquid water may be more common in the solar system's largest asteroid population than previously thought.

Sodium chloride, better known as table salt, isn't exactly the type of mineral that captures the imagination of scientists. However, a smattering of tiny salt crystals discovered in a sample from an asteroid has researchers at the University of Arizona Lunar and Planetary Laboratory excited, because these crystals can only have formed in the presence of liquid water.

Even more intriguing, according to the research team, is the fact that the sample comes from an S-type asteroid, a category known to mostly lack hydrated, or water-bearing, minerals. The discovery strongly suggests that a large number of asteroids hurtling through the solar system may not be as dry as previously thought. The finding, published in Nature Astronomy, gives renewed push to the hypothesis that most, if not all, water on Earth may have arrived by way of asteroids during the planet's tumultuous infancy.

Zega and lead study author Shaofan Che, a postdoctoral fellow at the Lunar and Planetary Laboratory, performed a detailed analysis of samples collected from asteroid Itokawa in 2005 by the Japanese Hayabusa mission and brought to Earth in 2010. 

Teens rarely receive addiction medication in U.S. treatment centers

Despite a record-setting number of overdose deaths nationwide in 2022, a new study from Oregon Health & Science University finds that only one in four adolescent residential treatment centers nationwide provides buprenorphine, a proven medication to treat opioid use disorder. ‘It’s hard to imagine getting adolescents with opioid use disorder off fentanyl without buprenorphine,’ says co-author Todd Korthuis, M.D., M.P.H., head of addiction medicine at OHSU.
Photo Credit: Oregon Health & Science University

New research reveals that only one in four adolescent residential treatment centers across the country provides a medication used to treat opioid use disorder, despite an ever-rising number of overdose deaths among young people nationwide resulting from a surge of illicit fentanyl.

The study, led by researchers at Oregon Health & Science University, published today in the Journal of the American Medical Association.

Researchers say the lack of buprenorphine in adolescent residential treatment centers undercuts the United States’ efforts to alleviate an overdose epidemic that claimed more than 109,000 lives in 2022, according to predicted provisional statistics from the Centers for Disease Control and Prevention, or CDC. Recognizing the particular vulnerability of young people, especially as fentanyl now contaminates other illicit substances, OHSU researchers set out to determine how many adolescent treatment centers in the U.S. were providing buprenorphine to treat addiction.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles