. Scientific Frontline

Tuesday, December 23, 2025

Scientists Crack Ancient Salt Crystals to Unlock Secrets of 1.4 Billion-Year-Old Air

Microscopic image of fluid inclusions in 1.4-billion-year-old halite crystals, which preserve ancient air and brine.
Image Credit: Justin Park/RPI

More than a billion years ago, in a shallow basin across what is now northern Ontario, a subtropical lake much like modern-day Death Valley evaporated under the sun’s gentle heat, leaving behind crystals of halite — rock salt.

It was a very different world than the one we know today. Bacteria were the dominant form of life. Red algae had only just appeared on the evolutionary scene. Complex multicellular life like animals and plants wouldn’t show up for another 800 million years. 

As the water evaporated into brine, some of it became trapped in tiny pockets within the crystals, effectively frozen in time. Those trapped fluid inclusions contained air bubbles revealing, in fine detail, the composition of the early Earth’s atmosphere. The crystals were buried in sediment, effectively sealed off from the rest of the world for 1.4 billion years, their secrets unknown. Until now. 

Tohoku University and Fujitsu Use AI to Discover Promising New Superconducting Material

The AI technology was utilized to automatically clarify causal relationships from measurement data obtained at NanoTerasu Synchrotron Light Source
Image Credit: Scientific Frontline / stock image

Tohoku University and Fujitsu Limited announced their successful application of AI to derive new insights into the superconductivity mechanism of a new superconducting material. Their findings demonstrate an important use case for AI technology in new materials development and suggests that the technology has the potential to accelerate research and development. This could drive innovation in various industries such as environment and energy, drug discovery and healthcare, and electronic devices.

The two parties used Fujitsu's AI platform Fujitsu Kozuchi to develop a new discovery intelligence technique to accurately estimate causal relationships. Fujitsu will begin offering a trial environment for this technology in March 2026. Furthermore, in collaboration with the Advanced Institute for Materials Research (WPI-AIMR), Tohoku University , the two parties applied this technology to data measured by angle-resolved photoemission spectroscopy (ARPES), an experimental method used in materials research to observe the state of electrons in a material, using a specific superconducting material as a sample.

New species are now being discovered faster than ever before, study suggests

Among the approximately 16,000 new species described every year, roughly 6,000 are insects. Pictured here is a lanternfly from India.
Photo Credit: John J. Wiens

About 300 years ago, Swedish naturalist Carl Linnaeus set out on a bold quest: to identify and name every living organism on Earth. Now celebrated as the father of modern taxonomy, he developed the binomial naming system and described more than 10,000 species of plants and animals. Since his time, scientists have continued to describe new species in the quest to uncover Earth's biodiversity.

According to a new University of Arizona-led study published in Science Advances, scientists are discovering species quicker than ever before, with more than 16,000 new species discovered each year. The trend shows no sign of slowing, and the team behind the new paper predicts that the biodiversity among certain groups, such as plants, fungi, arachnids, fishes and amphibians is richer than scientists originally thought. 

"Some scientists have suggested that the pace of new species descriptions has slowed down and that this indicates that we are running out of new species to discover, but our results show the opposite," said John Wiens, a professor in the University of Arizona Department of Ecology and Evolutionary Biology, in the College of Science, and senior author of the paper. "In fact, we're finding new species at a faster rate than ever before."

Ultra-high-resolution Lidar Reveals Hidden Cloud Structures

This experimental setup at Michigan Technological University allows researchers to create and study clouds under carefully controlled conditions. Researchers from Brookhaven National Laboratory used it to demonstrate the capabilities of a new ultra-high-resolution lidar, a laser-based remote sensing instrument for studying cloud properties.
Photo Credit: Michigan Technological University

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and collaborators have developed a new type of lidar — a laser-based remote-sensing instrument — that can observe cloud structures at the scale of a single centimeter. The scientists used this high-resolution lidar to directly observe fine cloud structures in the uppermost portion of laboratory-generated clouds. This capability for studying cloud tops with resolution that is 100 to 1,000 times higher than traditional atmospheric science lidars enables pairing with measurements in well-controlled chamber experiments in a way that has not been possible before.

The results, published in the Proceedings of the National Academy of Sciences, provide some of the first experimental data showing of how cloud droplet properties near the tops of clouds differ from those in the cloud interior. These differences are crucial to understanding how clouds evolve, form precipitation, and affect Earth’s energy balance.

“This is the first time we’ve been able to see these cloud-top microstructures directly and non-invasively,” said Fan Yang, an atmospheric scientist at Brookhaven Lab and the lead author of the study. “These structures occur on scales smaller than those used in most atmospheric models, yet they can strongly affect cloud brightness and how likely clouds are to produce rain.”

Monday, December 22, 2025

Neuroscience: In-Depth Description

Image Credit: Scientific Frontline / stock image

Neuroscience is the multidisciplinary scientific study of the nervous system, encompassing the brain, spinal cord, and peripheral nerves. Its primary goal is to understand the biological basis of consciousness, perception, memory, and behavior by investigating the structure, function, genetics, biochemistry, physiology, and pathology of nervous tissue.

Research Reveals How Spatial Scale Shapes Plant Invasions

Photo Credit: Courtesy of King’s College London

Scientists reveal that the scale of analysis determines whether invasive plants succeed by resembling or differing from native species, resolving decades of conflicting ecological evidence. 

Researchers from King’s College London have uncovered why decades of ecological studies have produced conflicting evidence about species invasions. 


Their findings, published in Ecology, show that the spatial scale of analysis fundamentally alters conclusions about how introduced plants interact with native communities. 


The study, led by Dr. Maria Perez-Navarro in the Department of Geography, tested two long-standing hypotheses - preadaptation and limiting similarity - using 33 years of data from Cedar Creek Ecosystem Science Reserve in Minnesota. 

Begging gene leads to drone food

A drone (center) begs worker bees for food. HHU researchers found that the associated complex interaction pattern is genetically specified.
Photo Credit: HHU/Steffen Köhle

Is complex social behavior genetically determined? 

Yes, as a team of biologists from Heinrich Heine University Düsseldorf (HHU), together with colleagues from Bochum and Paris, established during an investigation of bees. They identified a genetic factor that determines the begging behavior of drones, which they use to socially obtain food. They are now publishing their results in the journal Nature Communications. 

Male bees, the "drones," do not have an easy time when trying to access vital proteins. They cannot digest the most important protein source for bees, pollen, on their own. To avoid starvation, they rely on workers to feed them a pre-produced food slurry, which the workers manufacture themselves from pollen. However, to obtain this food, the drones must convince the workers to hand it overusing a specific sequence of behaviors. 

Anything-goes “anyons” may be at the root of surprising quantum experiments

MIT physicists propose that under certain conditions, a magnetic material’s electrons could splinter into fractions of themselves to form quasiparticles known as “anyons.”

In the past year, two separate experiments in two different materials captured the same confounding scenario: the coexistence of superconductivity and magnetism. Scientists had assumed that these two quantum states are mutually exclusive; the presence of one should inherently destroy the other.

Now, theoretical physicists at MIT have an explanation for how this Jekyll-and-Hyde duality could emerge. In a paper appearing today in the Proceedings of the National Academy of Sciences, the team proposes that under certain conditions, a magnetic material’s electrons could splinter into fractions of themselves to form quasiparticles known as “anyons.” In certain fractions, the quasiparticles should flow together without friction, similar to how regular electrons can pair up to flow in conventional superconductors.

Study finds exposure to common air pollutants alters adolescent brain development

For the first time, researchers at OHSU evaluated the long-term impact of air pollution on adolescent brain health and development.
Image Credit: Scientific Frontline / AI generated

Physician-scientists at Oregon Health & Science University warn that exposure to air pollution may have serious implications for a child’s developing brain.

In a recent study published in the journal Environmental Research, researchers in OHSU’s Developmental Brain Imaging Lab found that air pollution is associated with structural changes in the adolescent brain, specifically in the frontal and temporal regions — the areas responsible for executive function, language, mood regulation and socioemotional processing.

Air pollution causes harmful contaminants, such as particulate matter, nitrogen dioxide and ozone, to circulate in the environment. It has been exacerbated over the past two centuries by industrialization, vehicle emissions, and, more recently, wildfires.

Exposure to PFAS and PCBs linked to higher odds of MS

Aina Vaivade and Kim Kultima have measured the levels of common environmental pollutants in the blood of people with MS using a mass spectrometer (pictured).
Photo Credit: Tobias Sterner/Uppsala University

People who have been exposed to both PFAS and PCBs are more likely to be diagnosed with multiple sclerosis (MS). These new research findings are based on analyses of blood samples from more than 1,800 individuals in Sweden, one of the most comprehensive studies to date on the influence of chemical environmental exposure on the development of MS. 

Multiple sclerosis (MS) is an autoimmune disease in which both genetic and environmental factors can contribute to the risk of the disease. In the current study, researchers analyzed blood from individuals who had recently been diagnosed with MS to investigate concentrations of the common environmental contaminants PFAS and PCBs. 

Featured Article

What Is: The Phanerozoic Eon

Defining the Eon of Complex Life Image Credit: Scientific Frontline / AI generated The Phanerozoic Eon constitutes the current and most biol...

Top Viewed Articles