. Scientific Frontline: Quantum Science
Showing posts with label Quantum Science. Show all posts
Showing posts with label Quantum Science. Show all posts

Monday, December 12, 2022

Princeton chemists create quantum dots at room temp using lab-designed protein


Nature uses 20 canonical amino acids as building blocks to make proteins, combining their sequences to create complex molecules that perform biological functions.

But what happens with the sequences not selected by nature? And what possibilities lie in constructing entirely new sequences to make novel, or de novo, proteins bearing little resemblance to anything in nature?

That’s the terrain where Michael Hecht, professor of chemistry, works with his research group. And recently, their curiosity for designing their own sequences paid off.

They discovered the first known de novo (newly created) protein that catalyzes, or drives, the synthesis of quantum dots. Quantum dots are fluorescent nanocrystals used in electronic applications from LED screens to solar panels.

Their work opens the door to making nanomaterials in a more sustainable way by demonstrating that protein sequences not derived from nature can be used to synthesize functional materials — with pronounced benefits to the environment.

Wednesday, December 7, 2022

It’s colossal: Creating the world’s largest dilution refrigerator

Colossus will offer 5 cubic meters of space and cool components to around 0.01K.
Photo Credit: Ryan Postel, Fermilab

While the refrigerator in your kitchen gets cold enough to prevent your leftovers from spoiling, dilution refrigerators used for quantum computing research cool devices near the coldest physical temperature possible. Now at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, researchers are building Colossus: It will be the largest, most powerful refrigerator at millikelvin temperatures ever created.

Fermilab is known for its massive experiments, and Colossus will fit right in. Researchers from the Fermilab-hosted Superconducting Quantum Materials and Systems Center need lots of room at cold temperatures to achieve their goal of building a state-of-the-art quantum computer.

Unlike a kitchen refrigerator, which compresses gases called refrigerants to cool food, a dilution refrigerator uses a mixture of helium isotopes to create temperatures close to absolute zero, or zero kelvin: the coldest temperature imaginable in physics, which is physically impossible to reach.

“With the cooling power and volume that Colossus will provide, SQMS researchers will have unprecedented space for our future quantum computer and many other quantum computing and physics experiments,” said Matt Hollister, the lead technical expert on this project. “Colossus is named after the first electronic programmable computer, which was constructed in the 1940s for codebreaking. It was a historic milestone in the history of computing and seemed like an appropriate name for the size of our new refrigerator.”

Monday, December 5, 2022

Detecting dark matter with quantum computers

Akash Dixit works on a team that uses quantum computers to look for dark matter. Here, Dixit holds a microwave cavity containing a superconducting qubit. The cavity has holes in its side in the same way the screen on a microwave oven door has holes; the holes are simply too small for microwaves to escape.
Photo Credit: Ryan Postel, Fermilab

Dark matter makes up about 27% of the matter and energy budget in the universe, but scientists do not know much about it. They do know that it is cold, meaning that the particles that make up dark matter are slow-moving. It is also difficult to detect dark matter directly because it does not interact with light. However, scientists at the U.S. Department of Energy’s Fermi National Accelerator Laboratory have found a way to look for dark matter using quantum computers.

Aaron Chou, a senior scientist at Fermilab, works on detecting dark matter through quantum science. As part of DOE’s Office of High Energy Physics QuantISED program, he has developed a way to use qubits, the main component of quantum computing systems, to detect single photons produced by dark matter in the presence of a strong magnetic field.

New Quantum Light Source Paves the Way to a Quantum Internet

A molybdenum ditelluride material (blue and yellow lattice) just atoms thick connects telecom-wavelength quantum emitters to optical fibers with minimal loss. The devices generate single photons (red) when triggered by optical signals (green).
Image Credit: Courtesy of Huan Zhao, Center for Integrated Nanotechnologies, Los Alamos National Laboratory

Conventional light sources for fiber-optic telecommunications emit many photons at the same time. Photons are particles of light that move as waves. In today’s telecommunication networks, information is transmitted by modulating the properties of light waves traveling in optical fibers, similar to how radio waves are modulated in AM and FM channels. In quantum communication, however, information is encoded in the phase of a single photon—the photon’s position in the wave in which it travels. This makes it possible to connect quantum sensors in a network spanning great distances and to connect quantum computers together. Researchers recently produced single-photon sources with operating wavelengths compatible with existing fiber communication networks. They did so by placing molybdenum ditelluride semiconductor layers just atoms thick on top of an array of nano-size pillars. This is the first time that researchers have demonstrated this type of tunable light sources suited to use in telecommunications systems.

Wednesday, November 30, 2022

Physicists observe wormhole dynamics using a quantum computer

Artwork depicting a quantum experiment that observes traversable wormhole behavior.
Illustration Credit: inqnet/A. Mueller | Caltech

Scientists have, for the first time, developed a quantum experiment that allows them to study the dynamics, or behavior, of a special kind of theoretical wormhole. The experiment has not created an actual wormhole (a rupture in space and time), rather it allows researchers to probe connections between theoretical wormholes and quantum physics, a prediction of so-called quantum gravity. Quantum gravity refers to a set of theories that seek to connect gravity with quantum physics, two fundamental and well-studied descriptions of nature that appear inherently incompatible with each other.

"We found a quantum system that exhibits key properties of a gravitational wormhole yet is sufficiently small to implement on today's quantum hardware," says Maria Spiropulu, the principal investigator of the U.S. Department of Energy Office of Science research program Quantum Communication Channels for Fundamental Physics (QCCFP) and the Shang-Yi Ch'en Professor of Physics at Caltech. "This work constitutes a step toward a larger program of testing quantum gravity physics using a quantum computer. It does not substitute for direct probes of quantum gravity in the same way as other planned experiments that might probe quantum gravity effects in the future using quantum sensing, but it does offer a powerful testbed to exercise ideas of quantum gravity."

The research will be published December 1 in the journal Nature. The study's first authors are Daniel Jafferis of Harvard University and Alexander Zlokapa (BS '21), a former undergraduate student at Caltech who started on this project for his bachelor's thesis with Spiropulu and has since moved on to graduate school at MIT.

Tuesday, November 29, 2022

New quantum computing feat is a modern twist on a 150-year-old thought experiment


UNSW Sydney research demonstrates a 20x improvement in resetting a quantum bit to its ‘0’ state, using a modern version of the ‘Maxwell’s demon’.

A team of quantum engineers at UNSW Sydney has developed a method to reset a quantum computer – that is, to prepare a quantum bit in the ‘0’ state – with very high confidence, as needed for reliable quantum computations. The method is surprisingly simple: it is related to the old concept of ‘Maxwell’s demon’, an omniscient being that can separate a gas into hot and cold by watching the speed of the individual molecules.

“Here we used a much more modern ‘demon’ – a fast digital voltmeter – to watch the temperature of an electron drawn at random from a warm pool of electrons. In doing so, we made it much colder than the pool it came from, and this corresponds to a high certainty of it being in the ‘0’ computational state,” says Professor Andrea Morello of UNSW, who led the team.

“Quantum computers are only useful if they can reach the final result with very low probability of errors. And one can have near-perfect quantum operations, but if the calculation started from the wrong code, the final result will be wrong too. Our digital ‘Maxwell’s demon’ gives us a 20x improvement in how accurately we can set the start of the computation.”

Wednesday, November 23, 2022

Spin correlation between paired electrons demonstrated

Electrons leave a superconductor only as pairs with opposite spins. If both electron paths are blocked for the same type of spin by parallel spin filters, paired electrons from the superconductor are blocked and the currents decrease.
Image Credit: University of Basel, Department of Physics/Scixel

Physicists at the University of Basel have experimentally demonstrated for the first time that there is a negative correlation between the two spins of an entangled pair of electrons from a superconductor. For their study, the researchers used spin filters made of nanomagnets and quantum dots, as they report in the scientific journal Nature.

The entanglement between two particles is among those phenomena in quantum physics that are hard to reconcile with everyday experiences. If entangled, certain properties of the two particles are closely linked, even when far apart. Albert Einstein described entanglement as a “spooky action at a distance”. Research on entanglement between light particles (photons) was awarded this year's Nobel Prize in Physics.

Two electrons can be entangled as well – for example in their spins. In a superconductor, the electrons form so-called Cooper pairs responsible for the lossless electrical currents and in which the individual spins are entangled.

For several years, researchers at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have been able to extract electron pairs from a superconductor and spatially separate the two electrons. This is achieved by means of two quantum dots – nanoelectronic structures connected in parallel, each of which only allows single electrons to pass.

Monday, November 21, 2022

A possible game changer for next generation microelectronics

Magnetic fields created by skyrmions in two-dimensional sheet of material composed of iron, germanium and tellurium.
Image Credit: Argonne National Laboratory.

Magnets generate invisible fields that attract certain materials. A common example is fridge magnets. Far more important to our everyday lives, magnets also can store data in computers. Exploiting the direction of the magnetic field (say, up or down), microscopic bar magnets each can store one bit of memory as a zero or a one — the language of computers.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory wants to replace the bar magnets with tiny magnetic vortices. As tiny as billionths of a meter, these vortices are called skyrmions, which form in certain magnetic materials. They could one day usher in a new generation of microelectronics for memory storage in high performance computers.

“We estimate the skyrmion energy efficiency could be 100 to 1000 times better than current memory in the high-performance computers used in research.” — Arthur McCray, Northwestern University graduate student working in Argonne’s Materials Science Division

“The bar magnets in computer memory are like shoelaces tied with a single knot; it takes almost no energy to undo them,” said Arthur McCray, a Northwestern University graduate student working in Argonne’s Materials Science Division (MSD). And any bar magnets malfunctioning due to some disruption will affect the others.

New quantum tool developed in groundbreaking experimental achievement

SFLORG Stock Photo

For the first time in experimental history, researchers at the Institute for Quantum Computing (IQC) have created a device that generates twisted neutrons with well-defined orbital angular momentum. Previously considered an impossibility, this groundbreaking scientific accomplishment provides a brand-new avenue for researchers to study the development of next-generation quantum materials with applications ranging from quantum computing to identifying and solving new problems in fundamental physics.

“Neutrons are a powerful probe for the characterization of emerging quantum materials because they have several unique features,” said Dr. Dusan Sarenac, research associate with IQC and technical lead, Transformative Quantum Technologies at the University of Waterloo. “They have nanometer-sized wavelengths, electrical neutrality, and a relatively large mass. These features mean neutrons can pass through materials that X-rays and light cannot.”

While methods for the experimental production and analysis of orbital angular momentum in photons and electrons are well-studied, a device design using neutrons has never been demonstrated until now. Because of their distinct characteristics, the researchers had to construct new devices and create novel methods for working with neutrons.

Friday, November 18, 2022

Scientists closer to solving a superconducting puzzle with applications in medicine, transport and power transmission

Particle accelerator
Source: University of Bristol

Researchers studying the magnetic behavior of a cuprate superconductor may have explained some of the unusual properties of their conduction electrons.

Cuprate superconductors are used in levitating trains, quantum computing and power transmission. They are of a family of materials made of layers of copper oxides alternating with layers of other metal oxides, which act as charge reservoirs.

The largest use of superconductors is currently for manufacturing superconducting magnets used for medical MRI machines and for scientific applications such as particle accelerators.

For the potential applications of superconducting materials to be fully realized, developing superconductors that maintain their properties at higher temperatures is crucial for scientists. The cuprate superconductors currently exhibit relatively high transition point temperatures and therefore give scientists an opportunity to study what makes higher temperature superconductivity possible.

Tuesday, November 15, 2022

Unimon - A new qubit to boost quantum computers for useful applications

Artistic impression of a unimon qubit in a quantum processor.
Illustration Credit: Aleksandr Kakinen.

A group of scientists from Aalto University, IQM Quantum Computers, and VTT Technical Research Centre of Finland have discovered a new superconducting qubit, the unimon, to increase the accuracy of quantum computations

A group of scientists from Aalto University, IQM Quantum Computers, and VTT Technical Research Centre have discovered a new superconducting qubit, the unimon, to increase the accuracy of quantum computations. The team has achieved the first quantum logic gates with unimons at 99.9% fidelity — a major milestone on the quest to build commercially useful quantum computers. This pivotal piece of research was just published in the journal Nature Communications.

Of all the different approaches to building useful quantum computers, superconducting qubits are on the lead. However, the qubit designs and techniques currently used do not yet provide high enough performance for practical applications. In this noisy intermediate-scale quantum (NISQ) era, the complexity of the implementable quantum computations is mostly limited by errors in single- and two-qubit quantum gates. The quantum computations need to become more accurate to be useful.

Tuesday, November 8, 2022

New quantum phase discovered for developing hybrid materials

 Metropolitan University Scientists have discovered that in Ba1-xSrxAl2O4, a highly disordered atomic arrangement is formed in the AlO4 network at chemical compositions near the structural quantum critical point, resulting in both characteristics of crystalline and amorphous materials.
Illustration Credit: Yui Ishii, Osaka

Scientists discovered a hybrid state in which crystals exhibit both crystalline and amorphous characteristics near the structural quantum critical point.

If you have ever watched water freeze to ice, you have witnessed what physicists call a “phase transition.” Osaka Metropolitan University scientists have discovered an unprecedented phase transition during which crystals achieve amorphous characteristics while retaining their crystalline properties. Their findings contribute to developing hybrid materials for use in harsh environments, such as outer space. The results were published in Physical Review B.

A typical phase transition exhibited by crystalline solids involves a change in the crystal structure. Such structural phase transitions usually occur at finite temperatures. However, controlling the chemical composition of the crystal can lower the transition temperature to absolute zero (−273°C). The transition point at absolute zero is called the structural quantum critical point.

Monday, November 7, 2022

Scientists discover exotic quantum state at room temperature

Researchers at Princeton discovered a material, made from the elements bismuth and bromine, that allows specialized quantum behaviors — usually seen only under high pressures and temperatures near absolute zero — to appear at room temperature. 
Photo Credit: Shafayat Hossain and M. Zahid Hasan, Princeton University

For the first time, physicists have observed novel quantum effects in a topological insulator at room temperature. This finding opens up a new range of possibilities for the development of efficient quantum technologies, such as spin-based electronics, which may potentially replace many current electronic systems for higher energy efficiency.

The breakthrough, published as the cover article of the October issue of Nature Materials, came when Princeton scientists explored a topological material based on the element bismuth.

The scientists have used topological insulators to demonstrate quantum effects for more than a decade, but this experiment is the first time these effects have been observed at room temperature. Typically, inducing and observing quantum states in topological insulators requires temperatures around absolute zero, which is equal to minus 459 degrees Fahrenheit (or -273 degrees Celsius).

In recent years, the study of topological states of matter has attracted considerable attention among physicists and engineers and is presently the focus of much international interest and research. This area of study combines quantum physics with topology — a branch of theoretical mathematics that explores geometric properties that can be deformed but not intrinsically changed.

“The novel topological properties of matter have emerged as one of the most sought-after treasures in modern physics, both from a fundamental physics point of view and for finding potential applications in next-generation quantum engineering and nanotechnologies,” said M. Zahid Hasan, the Eugene Higgins Professor of Physics at Princeton University, led the research. “This work was enabled by multiple innovative experimental advances in our lab at Princeton.”

Wednesday, November 2, 2022

Method to char­ac­ter­ize large quan­tum com­put­ers

View inside an ion trap, the heart of an ion trap quantum computer. 
Credit: C Lackner/Quantum Optics and Spectroscopy Group, University of Innsbruck

Quantum devices are becoming ever more complex and powerful. Researchers at the University of Innsbruck, in collaboration with the Johannes Kepler University Linz and the University of Technology Sydney, are now presenting a method to characterize even large quantum computers using only a single measurement setting.

The gold-standard for the characterization of quantum devices is so-called quantum tomography, which in analogy to medical tomography, can draw a complete picture of a quantum system from a series of snapshots of the system. While offering plenty of insights, the number of measurements required for tomography increases rapidly, with three times as many measurements required for every additional qubit. Due to the sheer time it takes to perform all these measurements, tomography has only been possible on devices with a handful of qubits. However, recent developments on quantum computers have successfully scaled up system sizes much beyond the capabilities of tomography, making their characterization a daunting bottleneck.

Monday, October 24, 2022

High-tech sensors could guide vehicles without satellites, if they can handle the ride

Sandia National Laboratories atomic physicist Jongmin Lee examines the sensor head of a cold-atom interferometer that could help vehicles stay on course where GPS is unavailable.
Photo credit: Bret Latter

Words like “tough” or “rugged” are rarely associated with a quantum inertial sensor. The remarkable scientific instrument can measure motion a thousand times more accurately than the devices that help navigate today’s missiles, aircraft and drones. But its delicate, table-sized array of components that includes a complex laser and vacuum system has largely kept the technology grounded and confined to the controlled settings of a lab.

Jongmin Lee wants to change that.

The atomic physicist is part of a team at Sandia National Laboratories that envisions quantum inertial sensors as revolutionary, onboard navigational aids. If the team can reengineer the sensor into a compact, rugged device, the technology could safely guide vehicles where GPS signals are jammed or lost.

In a major milestone toward realizing their vision, the team has successfully built a cold-atom interferometer, a core component of quantum sensors, designed to be much smaller and tougher than typical lab setups. The team describes their prototype in the academic journal Nature Communications, showing how to integrate several normally separated components into a single monolithic structure. In doing so, they reduced the key components of a system that existed on a large optical table down to a sturdy package roughly the size of a shoebox.

Thursday, October 20, 2022

Our brains use quantum computation


Scientists from Trinity believe our brains could use quantum computation after adapting an idea developed to prove the existence of quantum gravity to explore the human brain and its workings. The discovery may shed light on consciousness, the workings of which remain scientifically difficult to understand and explain. Quantum brain processes could also explain why we can still outperform supercomputers when it comes to unforeseen circumstances, decision making, or learning something new

Scientists from Trinity believe our brains could use quantum computation after adapting an idea developed to prove the existence of quantum gravity to explore the human brain and its workings.

The brain functions measured were also correlated to short-term memory performance and conscious awareness, suggesting quantum processes are also part of cognitive and conscious brain functions.

If the team’s results can be confirmed – likely requiring advanced multidisciplinary approaches –they would enhance our general understanding of how the brain works and potentially how it can be maintained or even healed. They may also help find innovative technologies and build even more advanced quantum computers.

Tuesday, October 18, 2022

New laboratory to explore the quantum mysteries of nuclear materials

INL researchers have built a laboratory around molecular beam epitaxy (MBE), a process that creates ultra-thin layers of materials with a high degree of purity and control.
Credit: Idaho National Laboratory

Replete with tunneling particles, electron wells, charmed quarks and zombie cats, quantum mechanics takes everything Sir Isaac Newton taught about physics and throws it out the window.

Every day, researchers discover new details about the laws that govern the tiniest building blocks of the universe. These details not only increase scientific understanding of quantum physics, but they also hold the potential to unlock a host of technologies, from quantum computers to lasers to next-generation solar cells.

But there’s one area that remains a mystery even in this most mysterious of sciences: the quantum mechanics of nuclear fuels.

Exploring the frontiers of quantum mechanics

Until now, most fundamental scientific research of quantum mechanics has focused on elements such as silicon because these materials are relatively inexpensive, easy to obtain and easy to work with.

Now, Idaho National Laboratory researchers are planning to explore the frontiers of quantum mechanics with a new synthesis laboratory that can work with radioactive elements such as uranium and thorium.

Tuesday, October 11, 2022

Bristol researchers make important breakthrough in quantum computing


Researchers from the University of Bristol, quantum start-up, Phasecraft and Google Quantum AI have revealed properties of electronic systems that could be used for the development of more efficient batteries and solar cells.

The findings, published in Nature Communications today, describes how the team has taken an important first step towards using quantum computers to determine low-energy properties of strongly-correlated electronic systems that cannot be solved by classical computers. They did this by developing the first truly scalable algorithm for observing ground-state properties of the Fermi-Hubbard model on a quantum computer. The Fermi-Hubbard model is a way of discovering crucial insights into electronic and magnetic properties of materials.

Modeling quantum systems of this form has significant practical implications, including the design of new materials that could be used in the development of more effective solar cells and batteries, or even high-temperature superconductors. However, doing so remains beyond the capacity of the world’s most powerful supercomputers. The Fermi-Hubbard model is widely recognized as an excellent benchmark for near-term quantum computers because it is the simplest materials system that includes non-trivial correlations beyond what is captured by classical methods. Approximately producing the lowest-energy (ground) state of the Fermi-Hubbard model enables the user to calculate key physical properties of the model.

In the past, researchers have only succeeded in solving small, highly simplified Fermi-Hubbard instances on a quantum computer. This research shows that much more ambitious results are possible. Leveraging a new, highly efficient algorithm and better error-mitigation techniques, they successfully ran an experiment that is four times larger – and consists of 10 times more quantum gates – than anything previously recorded.

Thursday, October 6, 2022

Boron Nitride with a Twist Could Lead to New Way to Make Qubits

Shaul Aloni, Cong Su, Alex Zettl, and Steven Louie at the Molecular Foundry. The researchers synthesized a device made from twisted layers of hexagonal boron nitride with color centers that can be switched on and off with a simple switch.
Credit: Marilyn Sargent/Berkeley Lab

Achieving scalability in quantum processors, sensors, and networks requires novel devices that are easily manipulated between two quantum states. A team led by researchers from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has now developed a method, using a solid-state “twisted” crystalline layered material, which gives rise to tiny light-emitting points called color centers. These color centers can be switched on and off with the simple application of an external voltage.

“This is a first step toward a color center device that engineers could build or adapt into real quantum systems,” said Shaul Aloni, a staff scientist at Berkeley Lab’s Molecular Foundry, who co-led the study. The work is detailed in the journal Nature Materials.

For example, the research could lead to a new way to make quantum bits, or qubits, which encode information in quantum computers.

Color centers are microscopic defects in a crystal, such as diamond, that usually emit bright and stable light of specific color when struck with laser or other energy source such as an electron beam. Their integration with waveguides, devices that guide light, can connect operations across a quantum processor. Several years ago, researchers discovered that color centers in a synthesized material called hexagonal boron nitride (hBN), which is commonly used as a lubricant or additive for paints and cosmetics, emitted even brighter colors than color centers in diamond. But engineers have struggled to use the material in applications because producing the defects at a determined location is difficult, and they lacked a reliable way to switch the color centers on and off.

Friday, September 30, 2022

New Superconducting Qubit Testbed Benefits Quantum Information Science Development

A superconducting qubit sits in a dilution refrigerator in a Pacific Northwest National Laboratory (PNNL) physics lab. This experimental device is the first step in establishing a qubit testbed at PNNL.
  Photo Credit: Andrea Starr | Pacific Northwest National Laboratory

If you’ve ever tried to carry on a conversation in a noisy room, you’ll be able to relate to the scientists and engineers trying to “hear” the signals from experimental quantum computing devices called qubits. These basic units of quantum computers are early in their development and remain temperamental, subject to all manner of interference. Stray “noise” can masquerade as a functioning qubit or even render it inoperable.

That’s why physicist Christian Boutan and his Pacific Northwest National Laboratory (PNNL) colleagues were in celebration mode recently as they showed off PNNL’s first functional superconducting qubit. It’s not much to look at. Its case—the size of a pack of chewing gum--is connected to wires that transmit signals to a nearby panel of custom radiofrequency receivers. But most important, it’s nestled within a shiny gold cocoon called a dilution refrigerator and shielded from stray electrical signals. When the refrigerator is running, it is among the coldest places on Earth, so very close to absolute zero, less than 6 millikelvin (about −460 degrees F).

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles