.jpg)
MIT chemists showed they can use nuclear magnetic resonance (NMR) to decipher the structure of the fuzzy coat that surrounds Tau proteins. The findings may aid efforts to develop drugs that interfere with Tau buildup in the brain.
Image Credit: Jose-Luis Olivares, MIT; figure courtesy of the researchers
(CC BY-NC-ND 4.0)
Scientific Frontline: "At a Glance" Summary
- Discovery: MIT chemists successfully determined the atomic-level structure of the intrinsically disordered "fuzzy coat" surrounding Tau protein fibrils, a region comprising approximately 80% of the protein that was previously uncharacterizable by standard imaging.
- Methodology: The team developed a novel nuclear magnetic resonance (NMR) technique to magnetize protons within the rigid protein core and measure the transfer time to mobile segments, allowing them to map the proximity and dynamic movement of the disordered layers.
- Structural Detail: The analysis revealed a "burrito-like" architecture where the fuzzy coat wraps in layers around a rigid beta-sheet inner core, rather than extending randomly into the surrounding environment.
- Mechanism: The coat exhibits three distinct zones of mobility: a rigid core, an intermediate layer, and a highly dynamic outer layer rich in positively charged proline residues that are electrostatically repelled by the positively charged core.
- Significance: This structural model suggests that normal Tau proteins likely accumulate at the ends of existing filaments to drive fibril growth, rather than piling onto the sides, offering a precise mechanism for how Alzheimer's tangles propagate.
- Implication: Future therapeutic strategies must account for this protective layering, as small-molecule drugs intended to disaggregate Tau fibrils will need to effectively penetrate the dense fuzzy coat to reach and disrupt the toxic core.












_MoreDetail-v3_x2_1080x720.jpg)
.jpg)



