The results highlight the need to consider the interaction between different species of microbe when treating infections with antibiotics - and to adjust dosage accordingly.
“People with chronic infections often have co-infection with several pathogens, but the problem is we don’t take that into account in deciding how much of a particular antibiotic to treat them with. Our results might help explain why, in these people, the antibiotics just don’t work as well as they should,” said Thomas O’Brien, who carried out the research for his PhD in the University of Cambridge’s Department of Biochemistry and is joint first author of the paper.
Chronic bacterial infections such as those in the human airways are very difficult to cure using antibiotics. Although these types of infection are often associated with a single pathogenic species, the infection site is frequently co-colonized by a number of other microbes, most of which are not usually pathogenic in their own right.
Treatment options usually revolve around targeting the pathogen, and take little account of the co-habiting species. However, these treatments often fail to resolve the infection. Until now scientists have had little insight into why this is.
To get their results the team developed a simplified model of the human airways, containing artificial sputum (phlegm) designed to chemically resemble the real phlegm coughed up during an infection, packed with bacteria.