Researchers at the National Institute of Standards and Technology (NIST) have boosted the sensitivity of their atomic radio receiver a hundredfold by enclosing the small glass cylinder of cesium atoms inside what looks like custom copper “headphones.”
The structure — a square overhead loop connecting two square panels — increases the incoming radio signal, or electric field, applied to the gaseous atoms in the flask (known as a vapor cell) between the panels. This enhancement enables the radio receiver to detect much weaker signals than before. The demonstration is described in a new paper in Applied Physics Letters.
The headphone structure is technically a split-ring resonator, which acts like a metamaterial — a material engineered with novel structures to produce unusual properties. “We can call it a metamaterials-inspired structure,” NIST project leader Chris Holloway said.
NIST researchers previously demonstrated the atom-based radio receiver. An atomic sensor has the potential to be physically smaller and work better in noisy environments than conventional radio receivers, among other possible advantages.