![]() |
3D-printing technology reduces production time of magnets by 30%. Photo credit: Oksana Meleshchuk |
Scientists from the Ural Federal University and the Ural Branch of the Russian Academy of Sciences are determining the optimal conditions for 3D printing of permanent magnets from hard magnetic compounds based on rare-earth metals. This will make it possible to start small-scale production of magnets, give them any shape during manufacturing, and create complex configurations of magnets. Such magnets are suitable for miniature electric motors and electric generators, on which pacemakers work. In addition, the technology minimizes production waste and has a shorter production cycle. A description of the method and experimental results are presented in the Journal of Magnetism and Magnetic Materials.
Creating complex and small magnets is not an easy scientific and technical task, but they are in demand in various specialized applications, primarily medical ones. One of the most promising ways to create complex-shaped parts from magnetically hard materials is 3D printing. Ural scientists managed to determine the optimal parameters for 3D printing of permanent magnets using the selective laser sintering method. This is an additive manufacturing method in which magnetic material in the form of powder is sintered layer by layer into a three-dimensional product of a given shape based on a previously created 3D model. This technology makes it possible to change the internal properties of the magnet at almost all stages of production. For example, to change the chemical composition of the compound, the degree of spatial orientation of crystallites and crystallographic texture, and to influence the coercivity (resistance to demagnetization).