![]() |
Simulated atomic structure of perovskite after calcium doping. Illustration: Danil Bukhvalov |
UrFU scientists have found a way to protect perovskite solar cells based on lead-methylammonium iodide (a promising alternative to traditional silicon photovoltaic cells) from degradation by water, such as rain. They found that partial replacement of lead with other alkaline earth metals protects them from such degradation, and also increases the parts of the visible spectrum of radiation involved in the process of generating electrons. An article on the results of the study was published in the Journal of Solid State Chemistry. The research was financially supported by the Ministry of Education and Science of Russia under the Priority 2030 development program of Ural Federal University.
Perovskite solar cells based on lead-methylammonium iodide are superior to silicon cells in performance and ease of synthesis. They are also capable of effectively generating electricity in cloudy or foggy conditions, so they are ideal for use in Russia or countries with similar climates. However, a complete switch to perovskite solar panels is not possible due to a number of reasons causing instability of such photovoltaic cells.
One of the causes of instability is that the compound is unstable to contact with water or other organic solvents. If it rains on the photocell, the compound begins to degrade rapidly, destroying its structure. Scientists determined that replacing lead with metals such as calcium, barium, or strontium would protect the compound from rapid degradation.