![]() |
| Senior Scientist Lindsay Rizzardi, PhD Photo Credit: Courtesy of HudsonAlpha |
The human brain contains many types of cells that work together to ensure it functions properly. As arguably the most important organ in the human body, if something goes amiss with any brain cells or their connections to other cells, varying levels of neurological dysfunction can occur. Many neurological disorders arise from damage to brain cells due to a build-up of misfolded or aggregated proteins in the brain, like the tau protein and the amyloid-beta protein. Specific genes contain the instructions cells need for producing proteins. Changes to those genes can affect the protein production cycle, causing a change in the amount of protein produced or the conformation or quality of that protein.
Alterations to the DNA code itself are only one of the ways that protein production can go awry. A class of proteins called transcription factors are a key component of how genes are expressed, causing a protein product to be made at higher or lower amounts than needed. These transcription factors act without changing the genetic makeup of the gene. These factors bind to DNA and recruit repressors or activators like RNA polymerase that coordinate DNA transcription and, ultimately, translation into a protein.

.jpg)
.jpg)



.jpg)


