The atmospheric level of carbon dioxide — a gas that is great at trapping heat, contributing to climate change — is almost double what it was prior to the Industrial Revolution, yet it only constitutes 0.0415% of the air we breathe.
This presents a challenge to researchers attempting to design artificial trees or other methods of capturing carbon dioxide directly from the air. That challenge is one a Sandia National Laboratories-led team of scientists is attempting to solve.
Led by Sandia chemical engineer Tuan Ho, the team has been using powerful computer models combined with laboratory experiments to study how a kind of clay can soak up carbon dioxide and store it.
The scientists shared their initial findings in a paper published earlier this week in The Journal of Physical Chemistry Letters.
“These fundamental findings have potential for direct-air capture; that is what we’re working toward,” said Ho, lead author on the paper. “Clay is really inexpensive and abundant in nature. That should allow us to reduce the cost of direct-air carbon capture significantly, if this high-risk, high-reward project ultimately leads to a technology.”

.jpg)

.jpg)




