. Scientific Frontline

Wednesday, February 15, 2023

Pesticides in Capsules Are Less Toxic and More Effective at Killing Pests

Pesticides are taken up by the roots of plants when they germinate, and move up the food chain into the human body.
Photo Credit: Elizaveta Veretennikova

Pesticides in capsules are less toxic and more effective in killing pests. This was discovered by a group of chemists from China and Russia, including scientists from the Ural Federal University. The researchers proposed the use of β-cyclodextrins as capsule shells, which weaken the toxic effect of pesticides. Reducing toxicity in the long term will reduce the amount of pesticides not only in plants, but also in the human body. Humans can absorb them by eating plant foods and animal flesh. An article with the results of the research has been published in the journal Advanced Agrochem.

"Pesticides are used to kill pests and plant pathogens. They are also used to control various parasites, weeds, pests of grain and grain products, and wood. They are among the most toxic pollutants. They are very difficult to remove from the soil and are slow to decompose. As a result, they are absorbed into the roots of plants during germination and move up the food chain to enter the human body. Pesticides also tend to accumulate, especially in fatty tissues, which poses a serious threat to humans. In addition, in hot weather they can become gaseous and pollute the air," says Elena Kovaleva, Professor of the Department of Technology of Organic Synthesis at the Ural Fereral University.

Tuesday, February 14, 2023

Researchers find thermal limits of advanced nanomaterials

Boron nitride nanotube material in a crucible for heating at Florida State University's High-Performance Materials Institute.
Photo Credit: Mark Wallheiser/FAMU-FSU Engineering

A team of FAMU-FSU College of Engineering researchers at the High-Performance Materials Institute is exploring the thermal limits of advanced nanomaterials, work that could have a direct impact on medicine delivery systems, electronics, space travel and other applications.

The research team, led by Assistant Professor in Industrial and Manufacturing Engineering Rebekah Sweat, completed the first-ever study on how purified boron nitride nanotubes remain stable in extreme temperatures in inert environments.

Their work was published in the journal Applied Nano Materials.

Boron nitride nanotubes, or BNNTs, are stronger and more resistant to high temperatures than carbon nanotubes. Like their carbon cousins, they are structures measured by the nanometer — a length equal to one-billionth of a meter.

Irreversible loss of ice sheets imminent past 1.8°C warming

Greenland ice sheet from about 40,000 feet elevation.
Photo Credit: NASA

Irreversible loss of the West Antarctic and Greenland ice sheets, and a corresponding rapid acceleration of sea-level rise, may be imminent if global temperature change cannot be stabilized below 1.8°C, compared to preindustrial levels. That finding was published in Nature Communications by an international team of scientists, including Fabian Schloesser, researcher at the University of Hawaiʻi at Mānoa School of Ocean and Earth Science and Technology.

The team of climate researchers found that an ice sheet/sea level run-away effect can be prevented only if the world reaches net zero carbon emissions before 2060.

Melting ice sheets are potentially the largest contributor to sea-level change, and historically the hardest to predict because the physics governing their behavior is notoriously complex.

“The model used in our study captures for the first time the coupling between ice sheets, icebergs, ocean and atmosphere, which is important for improving future sea-level projections and understanding of the underlying processes,” said Schloesser.

Engineering skin grafts for complex body parts

A bioengineered glove of human skin created for grafting.
Photo Credit: Alberto Pappalardo and Hasan Erbil Abaci / Columbia University Vagelos College of Physicians and Surgeons

Skin grafts are a vital treatment for burns and other extensive skin injuries. Since the 1980s, advances in bioengineering have allowed researchers to grow new patches of skin in the lab. Such engineered grafts are less traumatic for patients than transplanting skin from elsewhere on the body.

To date, available techniques have only allowed such skin patches to be produced in shapes similar to bandages, such as flat rectangles or circles. These shapes work well to cover wounds on flat surfaces like the back. But using them on complex structures like the hands or face requires extensive cutting and suturing, which can cause damage and scarring.

A research team led by Dr. Hasan Erbil Abaci of Columbia University has been working on methods to make 3D engineered skin in the shape of complex body parts. Such custom grafts could then be transplanted intact, with minimal suturing required. In a new study, the team tested their skin-culture system using models of human hands and the hindlimbs of mice. Results were published on January 27, 2023, in Science Advances.

Securing supply chains with quantum computing

Sandia National Laboratories scientists Alicia Magann, right, Kenneth Rudinger, top left, Mohan Sarovar, bottom left, and Matthew Grace, not pictured, developed Feedback-based Algorithm for Quantum Optimization, or FALQON, as a new framework for programming quantum computers, an emerging technology that could become a powerful tool for global security.
Photo Credit: Robin Blume-Kohout

The Russo-Ukrainian conflict and the COVID-19 pandemic have shown how vulnerable global supply chains can be. International events can disrupt manufacturing, delay shipping, induce panic buying and send energy costs soaring.

New research in quantum computing at Sandia National Laboratories is moving science closer to being able to overcome supply-chain challenges and restore global security during future periods of unrest.

“Reconfiguring the supply chain on short notice is an exceptionally difficult optimization problem, which restricts the agility of global trade,” said Alicia Magann, a Truman Fellow at Sandia. She has led the development of a new way to design programs on quantum computers, which she and her team think could be especially useful for solving these kinds of massive optimization problems someday in the future when quantum technology becomes more mature.

Kangaroo fecal microbes could reduce methane from cows

Photo Credit: sandid

Baby kangaroo feces might help provide an unlikely solution to the environmental problem of cow-produced methane. A microbial culture developed from the kangaroo feces inhibited methane production in a cow stomach simulator in a Washington State University study.

After researchers added the baby kangaroo culture and a known methane inhibitor to the simulated stomach, it produced acetic acid instead of methane. Unlike methane, which cattle discard as flatulence, acetic acid has benefits for cows as it aids muscle growth. The researchers published their work in the journal Biocatalysis and Agricultural Biotechnology.

“Methane emissions from cows are a major contributor to greenhouse gases, and at the same time, people like to eat red meat,” said Birgitte Ahring, corresponding author on the paper and a professor in with the Bioproducts, Sciences and Engineering Laboratory at the WSU Tri-Cities campus. “We have to find a way to mitigate this problem.”

Reducing the burps and farts of methane emissions from cattle is no laughing matter. Methane is the second largest greenhouse gas contributor and is about 30 times more potent at heating up the atmosphere than carbon dioxide. More than half of the methane released to the atmosphere is thought to come from the agricultural sector, and ruminant animals, such as cattle and goats, are the most significant contributors. Furthermore, the process of producing methane requires as much as 10% of the animal’s energy.

Rice scientists reengineer cancer drugs to be more versatile

Rice University scientists have enlisted widely used cancer therapy systems to control gene expression in mammalian cells, a feat of synthetic biology that could change how diseases are treated.
Photo Credit: Jeff Fitlow/Rice University

Rice University scientists have enlisted widely used cancer therapy systems to control gene expression in mammalian cells, a feat of synthetic biology that could change how diseases are treated.

The lab of chemical and biomolecular engineer Xue Sherry Gao discovered a way to further tap the therapeutic potential of proteolysis targeting chimeras (PROTACs), small molecules that are used as effective tools for treating cancer, immune disorders, viral infections and neurodegenerative diseases.

Gao and collaborators reengineered the PROTAC molecular infrastructure and showed it can be used to achieve chemically induced dimerization (CID), a mechanism by which two proteins bind together only in the presence of a specific third molecule known as an inducer. The research is described in a study published in the Journal of the American Chemical Society.

The Scent of Discovery

 Gonzalo Otazu, Ph.D., examines the equipment used in the study.
Photo Credit: Steven Gaines

New research from the College of Osteopathic Medicine (NYITCOM) could help explain how the sense of smell is impacted in individuals with autism.

Individuals with autism have an “insistence on sameness,” and often avoid unfamiliar elements, including new smells and foods, which can impact their quality of life. While many studies have focused on the behavioral features of autism, additional research is needed to help explain its sensory aspects.

A study led by Assistant Professor of Biomedical Sciences Gonzalo Otazu, Ph.D., published in the journal Nature Communications, analyzes a mouse model of autism and reports differences in the neurological processes responsible for smell.

Heart failure places a great strain on healthcare

Anna Norhammar, adjunct professor at KI.
Photo Credit: Ulf Sirborn

Patients with heart failure often suffer from co-morbidities, which places a great strain on the healthcare services, a multinational study published in Heart reports. The researchers, who are based at Karolinska Institutet, identify an urgent need to improve risk management of the disease.

Up to 64 million people around the world have heart failure a figure that is expected to rise as populations age and diagnostic methods improve.

According to the new study, there are no multinational studies describing heart failure patients and the consequences of the disease.   

“Given that we know that the incidence of heart failure increases with population age, a modern, broad view of what the heart failure population looks like, involving risks and costs, is important for all forms of care planning,” says Anna Norhammar, adjunct professor at the Cardiology Unit, Department of Medicine (Solna), Karolinska Institutet.

When the light is neither "on" nor "off" in the nanoworld

Illustration of the slit-shaped nanostructure in gold with quantum state highlighted.
Illustration Credit: Daniel Fersch / Universität Würzburg

Scientists at the Universities of Würzburg and Bielefeld detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.

Whether the light in our living spaces is on or off can be regulated in everyday life simply by reaching for the light switch. However, when the space for the light is shrunk to a few nanometers, quantum mechanical effects dominate, and it is unclear whether there is light in it or not. Both can even be the case at the same time, as scientists from the Julius-Maximilians-Universität Würzburg (JMU) and the University of Bielefeld show in the journal “Nature Physics.”

“Detecting these exotic states of quantum physics on the size scales of electrical transistors could help in the development of optical quantum technologies of future computer chips,” explains Würzburg professor Bert Hecht. The nanostructures studied were produced in his group.

Featured Article

What Is: Cosmic Event Horizon

The Final Boundary An illustration of the Cosmic Event Horizon. Unlike the Observable Universe, which is defined by light that has reached u...

Top Viewed Articles