. Scientific Frontline

Thursday, October 26, 2023

Breakthrough synthesis method improves solar cell stability

Jin Hou is a Rice University graduate student and lead author on a study published in Nature Synthesis. Photo Credit: Courtesy of Jin Hou

Solar cell efficiency has soared in recent years due to light-harvesting materials like halide perovskites, but the ability to produce them reliably at scale continues to be a challenge.

A process developed by Rice University chemical and biomolecular engineer Aditya Mohite and collaborators at Northwestern University, the University of Pennsylvania and the University of Rennes yields 2D perovskite-based semiconductor layers of ideal thickness and purity by controlling the temperature and duration of the crystallization process.

Known as kinetically controlled space confinement, the process could help improve the stability and reduce the cost of halide perovskite-based emerging technologies like optoelectronics and photovoltaics.

Unlocking Sugar to Generate Biofuels and Bioproducts

Chang-Jun Liu (left) and Nidhi Dwivedi (right) in the Brookhaven Lab greenhouse with rice plants like those used in this study.
Photo Credit: Courtesy of Brookhaven National Laboratory

Plant biologists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have engineered enzymes to modify grass plants so their biomass can be more efficiently converted into biofuels and other bioproducts. As described in a paper just published in Plant Biotechnology Journal, these enzymes modify molecules that make up plant cell walls to provide access to fuel-generating sugars normally locked within complex structures. 

“The concept of biomass to biofuel seems simple, but it is technically very difficult to release the sugars,” noted Chang-Jun Liu, a senior plant biologist at Brookhaven Lab who led the study.

Plant biomass is full of energy-rich complex sugar molecules generated from photosynthesis. Each plant cell is surrounded by a rigid cell wall made of sugars and a material called lignin that provides structural support. Reducing lignin to gain access to the sugars has been the focus of research aimed at using plants to generate fuels and other products commonly made from petroleum.

Endangered whales live in area earmarked for gas exploration

Risso's dolphins.
Photo Credit Leonidas Karantzas/Greenpeace

Endangered whales and dolphins live year-round in an area of the Mediterranean earmarked for oil and gas exploration, new research shows.

Various cetacean species are known to inhabit the Hellenic Trench off Greece in the summer, but until now little has been known about their winter whereabouts.

This lack of information has been used to justify seismic surveys (which may harm whales and dolphins) in winter.

The new study found that at least four species – including the regionally endangered sperm whale – live in the deep waters of the Hellenic Trench in both summer and winter.

The research was carried out in 2021-22 by the Greenpeace Research Laboratories, University of Exeter, Greenpeace Greece and the Pelagos Cetacean Research Institute.

“The Mediterranean is one of the busiest seas on the planet, and whales and dolphins are already threatened by ship strikes, overfishing, bycatch (accidental catching), pollution with chemicals and plastics, and climate change,” said Dr Kirsten Thompson.

Machine can quickly produce needed cells for cancer treatment

WSU researchers have developed a minifridge-sized bioreactor that is able to manufacture the cells, called T cells, at 95% of the maximum growth rate – about 30% faster than current technologies.
Photo Credit: Courtesy of Washington State University

A new tool to rapidly grow cancer-killing white blood cells could advance the availability of immunotherapy, a promising therapy which harnesses the power of the body’s immune response to target cancer cells.

Washington State University researchers have developed a minifridge-sized bioreactor that is able to manufacture the cells, called T cells, at 95% of the maximum growth rate – about 30% faster than current technologies. The researchers report on their work in the journal Biotechnology Progress. They developed it using T cells from cattle, developed by co-author Bill Davis of WSU’s Veterinary College, and anticipate it will perform similarly on human cells.

In 2022, there were over 1,400 different types of therapies using T cells in development, with seven approved by the FDA for a variety of cancer treatments. Use of the therapy, called chimeric antigen receptor T cell (CAR-T), is limited, however, because of the cost and time needed to grow T cells. Each infusion treatment for a cancer patient requires up to 250 million cells.

An unexpected link between 2 schizophrenia risk proteins

The study findings suggest that when the proteins don’t bind properly, signaling among neurons, illustrated above, becomes imbalanced, which can lead to related negative behavioral symptoms.
 Image Credit: T. Ahmed, A. Buonanno, National institute of Child Health and Human Development

The discovery of a physical interaction between two proteins in brain cells that can be traced in mice to control of movement, anxiety and memory could one day open the door to development of new schizophrenia treatment strategies.

The research group is the first to determine that the two proteins, both among the dozens of proteins related to risk for the development of schizophrenia, bind to each other under normal conditions in multiple regions of the brain, and that their connection was found in mice to be key to maintaining normal movement, memory function and anxiety regulation.

When that connection doesn’t happen as it should, they found, behavior can be negatively affected – in mice, disruption to the proteins’ ability to interact increased hyperactivity, reduced risk avoidance and impaired memory. Though delusions and hallucinations are hallmark symptoms of schizophrenia, the condition also encompasses additional symptoms, including movement and memory problems. 

“These two proteins are seemingly unrelated, and our study has provided a link between them that wasn’t recognized before,” said lead author Chen Gu, associate professor of biological chemistry and pharmacology in The Ohio State University College of Medicine.  

Directed evolution of catalysts for the energy transition

Alfred Ludwig, professor for Materials Discovery and Interfaces, is involved in the Synergy Grant from Ruhr University Bochum.
Photo Credit: © RUB, Marquard

Catalysts should be efficient and durable. To find them, four teams are systematically working together on new concepts. They are being funded by the European Research Council (ERC) with 10 million euros.

Hydrogen is considered the energy carrier of the future. To produce it, reactions have to be catalyzed, some of which take place under extreme conditions. Previous electrocatalysts usually cannot withstand this for long – new materials are needed that are both powerful and durable, and ideally do not contain expensive and scarce elements. A Danish-German-Swiss research consortium is systematically taking a new approach in the project "Directed Evolution of Metastable Electrocatalyst Interfaces for Energy Conversion", or DEMI for short. DEMI will be funded for the next six years with around 10 million euros as a Synergy Grant from the European Research Council ERC, the highest award for researchers in the EU. 

Keeping T cells in check and on target

L-R: Professor Stephen Turner & Dr Brendan Russ
Photo Credit: Courtesy of Monash University

Our immune system’s T cells kill tumors and virus-infected cells to prevent disease from spreading to healthy tissues. However, in order to recognize their target and perform their protective function, T cells must undergo a process of maturation which includes being exposed to, then remembering, the unwanted pathogen.

Monash Biomedicine Discovery Institute (BDI) researchers have generated a detailed genetic blueprint that outlines the wiring configuration needed to enhance T cell function, published in Cell Reports.

First author Dr Brendan Russ said that there is great interest in understanding how the maturation of one particular type of T cell, CD8+, is regulated, not only because the body uses CD8+ T cells to fight viral infection and cancer, but also because inappropriate maturation of T cells can result in killing of healthy tissues.

“These maturation processes underlie the ability of T cells to respond to viruses and tumors. What we want is a sweet spot for these T cells such that they become activated only when the body is actually under threat. Indeed, many cutting-edge cancer therapeutics aim to manipulate T cell maturation. So, our findings add to this body of research, and suggest a means of modulating T cell maturation to improve such therapies,” Dr Russ said.

New RNA-regulating proteins found to be key in severe asthma

Photo Credit: Cottonbro Studio

A new publication in Frontiers in Cell and Developmental Biology led by researchers from King’s has revealed important information on the role of mRNA regulating proteins in asthma for the first time.

Asthma is the most common chronic inflammatory disease of the airways that people experience. It affects over 5 million people in the UK and is estimated to impact approximately 300 million people worldwide.

Asthma is a lung condition which causes breathing problems due to inflammation of the airway tubes that carry air in and out of the lungs. While the inflammatory process that causes asthma is well known among researchers and clinicians, the expression of genes underpinning this inflammation is poorly understood.

Better batteries for electric cars

Eric Ricardo Carreon Ruiz (left) and Pierre Boillat in front of part of PSI's Swiss spallation neutron source SINQ. There, at the BOA experimental station, they conducted their investigations.
Photo Credit: Paul Scherrer Institute/Mahir Dzambegovic

PSI researchers are using neutrons to make changes in battery electrolytes visible. The analysis enables better understanding of the physical and chemical processes and could aid in the development of batteries with better characteristics. The results have now been published in Science Advances.

The range is too limited, charging is too slow when it’s cold . . . the list of prejudices against electric cars is long. Even though progress is rapid, batteries remain the critical component for electromobility – as well as for many other applications, from smartphones to large storage devices designed to stabilize the power grid. The problem: Battery developers still lack a full understanding of what is happening, chemically and physically, during charging and discharging, especially in liquid electrolytes between the two electrodes through which charge carriers are exchanged.

Now Eric Ricardo Carreon Ruiz of PSI is bringing light into this darkness. A doctoral researcher in Pierre Boillat’s group at PSI, he is using neutrons from the Swiss spallation neutron source SINQ to investigate different electrolytes, studying for example their behavior at fluctuating temperatures. His results provide important insights that could help in the development of new electrolytes and higher-performance batteries.

First digital atlas of human fetal brain development published

Image Credit: Geralt

The first digital atlas showing how the human brain develops in the womb has been published by a global research team led by the University of Oxford.

A team of over 200 researchers around the world, involving multiple health and scientific institutions, led by the University of Oxford, has today published, in the journal Nature, the first digital atlas showing the dynamics of normative maturation of each hemisphere of the fetal brain between 14- and 31-weeks’ gestation - a critical period of human development.

The atlas was produced using over 2,500 3-dimensional ultrasound (3D US) brain scans that were acquired serially during pregnancy from 2,194 fetuses in the INTERGROWTH-21st Project, which is a large population-based study of healthy pregnant women living in eight diverse geographical regions of the world (including five in the Global South), whose children had satisfactory growth and neurodevelopment at 2 years of age.

The study is unique because, for the first time, an international dataset of 3D US scans, collected using standardized methods and equipment, has been analyzed with advanced artificial intelligence (AI) and image processing tools to construct a map showing how the fetal brain matures as pregnancy advances.

Featured Article

Hidden magma oceans could shield rocky exoplanets from harmful radiation

UNDER ARMOR? Deep layers of molten rock inside some super-earths could generate powerful magnetic fields—potentially stronger than Earth’s—a...

Top Viewed Articles