Researchers at the Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, have introduced a new approach for electrochemical carbon dioxide (CO₂) reduction. By designing multilayer cobalt phthalocyanine (CoPc)/carbon core-shell structures, the team has demonstrated a catalyst architecture that makes CO₂ conversion into carbon monoxide (CO) both stable and efficient.
The study combined large-scale data analysis and artificial intelligence (AI) to screen 220 molecular candidates. Cobalt phthalocyanine - widely known as a blue pigment - emerged as the most effective option for selective CO production. This discovery became the basis for constructing electrodes optimized for CO₂ utilization.
"We wanted to move beyond conventional thinking that isolated molecules perform best," said Hiroshi Yabu, a professor at the (WPI-AIMR) who led the research. "Instead, our results show that stacking these molecules in ordered layers produces a much stronger catalytic effect."
.jpg)
.jpg)
_MoreDetail-v3_x2_1352x762.jpg)
.jpg)




.jpg)
