![]() |
| Lake 227 of the Experimental Lakes Area. Photo Credit: Rebecca Garner |
The algal blooms increasingly seen in Canadian lakes have been linked to both nutrient pollution from agricultural runoff and climate change. However, a new Concordia-led study using DNA sequencing of lakebed microbes reveals that these two drivers amplify each other in ways that profoundly affect the health of lake ecosystems.
Using records and samples from the International Institute for Sustainable Development Experimental Lakes Area (ELA), a group of 58 lakes in northwestern Ontario designated freshwater research facilities, the researchers paired environmental monitoring data dating back more than five decades with paleogenetic reconstructions from lakebed microbes dating back more than a century.
By sequencing DNA found in lake sediments, the researchers got insight into past algal communities’ composition and compare them to communities today. This provided critical insight into how those communities changed over decades.
“The sediment DNA archives gave us a chronology of these lakes’ history,” says lead author Rebecca Garner, PhD 2023, and currently a postdoctoral fellow at the University of California, Berkeley. “This is the first study to show that we can reconstruct the community dynamics of that ecosystem and dramatically expands the diversity of microorganisms that we were able to study.”
The study was published in the journal Environmental Microbiology.



_MoreDetail-v3_x2_2276x1516.jpg)
_MoreDetail-v3_x2_1080x720.jpg)

.jpg)


