. Scientific Frontline

Tuesday, November 25, 2025

Flowering discovery could lead to more reliable mungbean yields

Mungbean flowers at UQ Gatton.
Photo Credit: Megan Pope

New breeding opportunities for an important cash crop have been unlocked by University of Queensland and Grains Research and Development Corporation (GRDC)-supported research. 

Queensland Alliance of Agriculture and Food Innovation PhD candidate Caitlin Dudley, supported by a GRDC Research Scholarship, has revealed key insights about mungbean flowering through extensive field trials. 

“Our research found that when mungbean flowers, and how long they flowers, are independent traits with distinct genetic controls,” Ms Dudley said. 

“That’s important to know because it opens opportunities for breeders to optimize flowering time to improve yield for specific growing environments. 

Laparoscopic surgery significantly reduces blood loss and improves jaundice recovery for severe newborn liver disease

Pediatric surgery ward at Nagoya University Hospital, where laparoscopic surgery for biliary atresia is performed.
Photo Credit: Merle Naidoo, Nagoya University

Biliary atresia affects newborns when bile ducts become blocked, leading to liver damage that often requires transplants—a new study evaluates an alternative to traditional open surgery.

Nagoya University researchers and their collaborators have found that minimally invasive laparoscopic surgery significantly reduces blood loss and improves jaundice recovery compared to traditional open surgery for treating biliary atresia—a serious liver condition in newborns. The study, published in Hepatobiliary Surgery and Nutrition, also found that high-dose steroid therapy after surgery does not necessarily improve outcomes for treating this condition.

Biliary atresia affects 1 in 15,000 newborns and is the leading cause of liver transplants in children. It occurs when bile ducts become blocked or do not develop properly, which prevents effective liver function and leads to progressive damage. What causes this blockage is unknown, and surgery is usually performed within the first two to three months of birth when the condition is diagnosed. 

New observations suggest Mars’ south pole lacks lake beneath the ice

An artist's concept of NASA’s Mars Reconnaissance Orbiter, which has been orbiting the Red Planet since 2006. The antenna is part of SHARAD, a radar that peers below the Martian surface.
Image Credit: NASA/JPL-Caltech

A new study published in Geophysical Research Letters casts doubt on a 2018 discovery of a briny lake potentially lurking beneath Mars’ south polar cap.

SHARAD, the Shallow Radar sounder on NASA’s Mars Reconnaissance Orbiter (MRO), performed a maneuver that allowed it to peer deeper beneath the polar ice than ever before. It recorded only a faint signal where MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding), the low-frequency radar on the European Space Agency’s Mars Express spacecraft, found a highly radar-reflective surface under the ice in 2018, which that team interpreted to be due to the presence of liquid water.

“The existence of liquid water under the south pole is really compelling and exciting, but if it is there, SHARAD should also see a very bright reflectance spot, and we don’t,” said study lead author Gareth Morgan, a SHARAD co-investigator and Planetary Science Institute senior scientist.

Scientific Models Overestimate Natural Processes That Mitigate Climate Change

Silky lupine plants at Lassen National Park in California
Photo Credit: Duncan Menge

High levels of atmospheric carbon dioxide intensify climate change, but high carbon dioxide levels can also stimulate plant growth. Plant growth removes carbon dioxide from the atmosphere, partially mitigating the effects of climate change. However, plants only grow faster in the presence of high levels of carbon dioxide if they can also acquire enough nitrogen from the atmosphere to do so. The actual amount of nitrogen acquired from the atmosphere was reassessed in a study co-led by Columbia faculty that was released this summer; it was shown to be significantly lower than previously estimated.

Concordia researchers identify key marker linking coronary artery disease to cognitive decline

Zacharie Potvin-Jutras, with Claudine Gauthier:
“Our goal is to examine conditions at the onset of a heart disease, before there has been any significant impact on the brain”
Photo Credit: Courtesy of Concordia University

Individuals with coronary artery disease (CAD) — a constricting or blocking of blood vessels feeding the heart — face increased risks of strokes, cognitive impairment and dementia. However, the link between CAD and cognitive function is not fully understood. 

A new study led by Concordia researchers looks at how the disease affects the brain’s white matter, the network of nerve fibers that connects different regions of the brains and is critical to transmitting information efficiently. 

The study, published in the Journal of Neuroscience, applied a novel multivariate approach using 12 separate metrics. The researchers compared test results and MRI scans of 43 patients with CAD to those of 36 healthy individuals. All participants were over the age of 50. 

Microplastics pose a human health risk in more ways than one

Bio-beads collected near Truro.
Photo Credit Beach Guardian

A new study shows that microplastics in the natural environment are colonized by pathogenic and antimicrobial resistant bacteria. The study team calls for urgent action for waste management and strongly recommends wearing gloves when taking part in beach cleans. 

Microplastics are plastic particles less than 5mm in size and are extremely widespread pollutants. It is estimated that over 125 trillion particles have accumulated in the ocean (surface to seabed) and they have also been detected in soils, rivers, lakes, animals and the human body. 

An emerging concern associated with microplastics is the microbial communities that rapidly make their home on the particle surface, forming complex biofilms known as the “Plastisphere”. These communities may often include pathogenic (disease-causing) or antimicrobial resistant (AMR) bacteria. 

The seamounts of Cape Verde: a biodiversity hotspot and a priority for marine conservation in the central-eastern Atlantic

Image Credit: Projecte Luso/iMirabilis2/iAtlantic

An international team led by Covadonga Orejas, a researcher at the Gijón Oceanographic Centre of the Spanish Institute of Oceanography (IEO-CSIC); Veerle Huvenne, a researcher at the UK National Oceanography Centre (NOC); and Jacob González-Solís, professor at the Faculty of Biology and the Biodiversity Research Institute (IRBio) of the University of Barcelona, has published the first comprehensive study on the seamounts of the Cape Verde archipelago, their biodiversity, ecological functionality and socio-economic relevance in the journal Progress in Oceanography.

These volcanic formations — at least 14 large mountains and numerous smaller elevations — act as veritable oases of life in the deep ocean, concentrating nutrients and modifying the circulation of underwater currents. This supports exceptional biodiversity, ranging from microorganisms to communities of deep-sea corals and sponges, as well as sharks, turtles, seabirds and cetaceans. Their position between the temperate waters of the North Atlantic and the tropical waters of the South, further enhances their productivity and ecological connectivity. 

Ecological winners: Why some species dominate the planet

A new study sheds light on why some species seem to thrive nearly everywhere, while others are rare and have very limited ranges. Pictured is the boojum tree (Fouquieria columnaris), native only to a few desert regions in Mexico's Gulf of California. 
Photo Credit: Daniel Stolte

Few ideas in science have been tested and confirmed as thoroughly as evolution by natural selection. 160 years ago, Charles Darwin proposed the theory of evolution by natural selection after observing organisms that had developed highly specialized traits to better survive or reproduce in their environments. Whether the same process can explain global patterns of biodiversity, however – why most species are restricted to certain environments while a few outliers seem to be found everywhere – remains largely uncertain.

"We still are not exactly sure why most species are confined to narrow ranges, while only a few thrive nearly everywhere," said Brian Enquist, professor in the University of Arizona Department of Ecology and Evolutionary Biology and senior author of a new study providing the strongest global evidence yet that abundant plant species became so dispersed over time because of their ability to tolerate diverse climates.

Looping long-necked dinosaur site reveals its secrets

An aerial view of the loop section of the West Gold Hill Dinosaur Tracksite in Colorado.
Photo Credit: Dr. Paul Murphey

An analysis of a unique looping trail of ancient footprints in the United States reveals the dinosaur which made it may have been limping. 

The site near Ouray in Colorado is one of the most continuous and tightly turning sauropod trackways ever documented. 

Dr. Anthony Romilio from The University of Queensland’s Dinosaur Lab analyzed more than 130 footprints along the 95.5-metre track made 150 million years ago. 

“This was left in the Late Jurassic when long-necked dinosaurs such as Diplodocus and Camarasaurus roamed North America,” Dr Romilio said. 

Why the "gut brain" plays a central role for allergies

This tissue section, taken from the intestine of a mouse unable to produce the neuropeptide VIP, clearly shows the striking frequency with which certain cell types occur on the intestine's surface. These include villous cells (red), mucus-producing goblet cells (yellow), Paneth cells (pink) and stem cells (green).
Image Credit: © Charité | Luisa Barleben

The intestinal nervous system, often referred to as the "gut brain", is essential in controlling digestion and maintaining the intestinal barrier. This protective layer, made up of the intestinal mucosa, immune cells and the microbiome, shields the body from the contents of the gut. Its effectiveness depends on the delicate balance among these components. If this balance is disrupted, inflammation, allergies, or chronic intestinal diseases can arise. The intestinal mucosa serves as the body’s primary defense against pathogens. While previous studies have shown that the intestinal nervous system is involved in immune responses in addition to digestion, its role in the development of intestinal epithelial cells has remained largely unclear until now. 

Featured Article

Hidden magma oceans could shield rocky exoplanets from harmful radiation

UNDER ARMOR? Deep layers of molten rock inside some super-earths could generate powerful magnetic fields—potentially stronger than Earth’s—a...

Top Viewed Articles