. Scientific Frontline

Saturday, January 10, 2026

How Nutrient Availability Shapes Breast Cancer’s Spread

A microscope image of a breast cancer tumor (blue) and its surrounding microenvironment in a mouse model.
Image Credit: Joseph Szulczewski, David Inman, Kevin Eliceiri, and Patricia Keely/University of Wisconsin/National Institutes of Health

Scientists have gained new insights into how nutrient availability in different organs affects the spread, or metastasis, of breast cancer throughout the body.

In a study in mice jointly led by researchers at Harvard Medical School, Massachusetts General Hospital, and MIT, the team found that no single nutrient explains why breast cancer grows in one organ and not another. Instead, multiple nutrients and cancer cell characteristics work together to shape the spread of the disease.

The team also discovered that breast cancer cells require the nutrient purine to metastasize, regardless of their location or other nutrients available.

Local Magnetic Field Gradients Enable Critical Material Separations

A new high-throughput Mach–Zehnder interferometry imaging capability at Pacific Northwest National Laboratory, developed for critical minerals and materials extraction research, enables direct spatiotemporal imaging of ion concentrations in magnetic fields and reveals sustained concentration waves and rare earth ion enrichment regions driven by magnetic field gradients.
Photo Credit: Andrea Starr | Pacific Northwest National Laboratory

Rare earth elements (REEs) are crucial for energy-related applications and are expected to play an increasingly important role in emerging technologies. However, these elements have very similar chemical properties and naturally coexist as complex mixtures in both traditional and unconventional feedstocks, making their separation challenging. Researchers in the Non-Equilibrium Transport Driven Separations (NETS) initiative used standard low-cost permanent magnets to induce a magnetic field gradient in solutions containing REEs. They found that these permanent magnets create local magnetic fields strong enough to lead to regions enriched in REE ions, with concentration increases of up to three to four times the concentration of the starting solution. Directly observing magnetic field–driven ion enrichment in real time, without intrusive probes that disturb the system, has long been a challenge. The development of a new high-throughput Mach–Zehnder interferometry imaging capability has now enabled visualization of these dynamics as they unfold.

Study shows that species-diverse systems like prairies have built-in protection

The Rainfall and Diversity Experiment, where the study is based, was established at the KU Field Station in 2018. The site includes 12 constructed shelters, each with 20 plots planted with differing levels of plant species diversity and allowed different levels of precipitation. Research at the site continues.
Photo Credit: Courtesy of University of Kansas

Six years into a study on the effect of plant pathogens in grasslands, University of Kansas researchers have the data to show that species diversity — a hallmark of native prairies — works as a protective shield: It drives growth and sustains the health of species-diverse ecosystems over time, functioning somewhat like an immune system.

The research findings, just published in the Proceedings of the National Academy of Sciences (PNAS), have implications for management of native grassland, rangeland and agricultural lands. The results support regenerative agricultural approaches that strengthen the soil biome long-term, such as intercropping, rotation of different cover crops and encouraging a variety of native perennials (prairie strips) along field margins.

The study emphasized the interaction of changing precipitation and the loss of species diversity.

Friday, January 9, 2026

Scientists develop stronger, longer-lasting perovskite solar cells

Perovskite solar cell
Photo Credit: Xiaoming Chang

Scientists have found a way to make perovskite solar cells not only highly efficient but also remarkably stable, addressing one of the main challenges holding the technology back from widespread use. 

Perovskite has long been hailed as a game-changer for the next generation of solar power. However, advances in material design are still needed to boost the efficiency and durability of solar panels that convert sunlight into electricity. 

Led by Professor Thomas Anthopoulos from The University of Manchester, the research team achieved this by fine-tuning the molecules that coat the perovskite surfaces. They utilized specially designed small molecules, known as amidinium ligands, which act like a molecular “glue” to hold the perovskite structure together. 

Thursday, January 8, 2026

This exotic form of ice just got weirder

Researchers paired ultrafast X-rays with specialized instruments to study the atomic stacking structures of superionic water – a hot, black and strangely conductive form of ice that is believed to exist in the center of giant ice planets like Neptune and Uranus.
Illustration Credit: Greg Stewart/SLAC National Accelerator Laboratory

Researchers hoped to clarify the boundaries between different types of superionic water – the hot, black ice believed to exist at the core of giant ice planets. Instead, they found multiple atomic stacking patterns coexisting in overlapping configurations never seen before in this phase of water. 

Superionic water – the hot, black and strangely conductive form of ice that exists in the center of distant planets – was predicted in the 1980s and first recreated in a laboratory in 2018. With each closer look, it continues to surprise researchers.

In a recent study published in Nature Communications, a team including researchers at the Department of Energy’s SLAC National Accelerator Laboratory made a surprising discovery: Multiple atomic packing structures can coexist under identical conditions in superionic water.

New process for stable, long-lasting all-solid-state batteries

An innovative manufacturing process paves the way for the battery of the future: In their latest study PSI researchers demonstrate a cost-effective and efficient way to produce all-solid-state batteries with a long lifespan. The image shows a test cell used to fabricate and test the all-solid-state battery developed at PSI.
Photo Credit: © Paul Scherrer Institute PSI/Mahir Dzambegovic

Researchers at the Paul Scherrer Institute PSI have achieved a breakthrough on the path to practical application of lithium metal all-solid-state batteries – the next generation of batteries that can store more energy, are safer to operate, and charge faster than conventional lithium-ion batteries. 

All-solid-state batteries are considered a promising solution for electromobility, mobile electronics, and stationary energy storage – in part because they do not require flammable liquid electrolytes and therefore are inherently safer than conventional lithium-ion batteries. 

Two key problems, however, stand in the way of market readiness: On the one hand, the formation of lithium dendrites at the anode remains a critical point. These are tiny, needle-like metal structures that can penetrate the solid electrolyte conducting lithium ions between the electrodes, propagate toward the cathode, and ultimately cause internal short circuits. On the other hand, an electrochemical instability – at the interface between the lithium metal anode and the solid electrolyte – can impair the battery’s long-term performance and reliability. 

Stem cell engineering breakthrough paves way for next-generation living drugs

UBC research associate Dr. Ross Jones in the lab where they are working to develop cell-based therapies from stem cells.
Photo Credit: Phillip Chin.

For the first time, researchers at the University of British Columbia have demonstrated how to reliably produce an important type of human immune cell—known as helper T cells—from stem cells in a controlled laboratory setting.  

The findings, published today in Cell Stem Cell, overcome a major hurdle that has limited the development, affordability and large-scale manufacturing of cell therapies. The discovery could pave the way for more accessible and effective off-the-shelf treatments for a wide range of conditions like cancer, infectious diseases, autoimmune disorders and more.   

“Engineered cell therapies are transforming modern medicine,” said co-senior author Dr. Peter Zandstra, professor and director of the UBC School of Biomedical Engineering. “This study addresses one of the biggest challenges in making these lifesaving treatments accessible to more people, showing for the first time a reliable and scalable way to grow multiple immune cell types.”  

New findings on genomic regulation mechanisms throughout evolution

Studying the regulatory genomes of the bat sea star and the purple sea urchin.
Image Credit: Courtesy of University of Barcelona

The study outlines a new scenario for understanding how genome regulation and chromatin organization influence the evolution of animal body plans. “Our study opens up new paths for understanding the biological and evolutionary significance of this extreme conservation, since for the first time we can compare these very ancient regulatory elements across different lineages, a scientific breakthrough that allows us to understand what properties they share,” says Ignacio Maeso, professor at the UB’s Department of Genetics, Microbiology and Statistics. 

How Many Ghost Particles All the Milky Way’s Stars Send Towards Earth

A map of the Milky Way based on data from ESA's Gaia telescope
Image Credit: ESA

Every second, a trillion of the elusive ghost particles, the neutrinos, pass straight through your body. Now, astrophysicists from the University of Copenhagen have mapped how many ghost particles all the stars in the Milky Way send towards Earth, and where in the galaxy they originate. This new map could help us track down these mysterious particles and unlock knowledge about our Galaxy that has so far been out of reach. 

They’re called ghost particles for a reason. They’re everywhere – trillions of them constantly stream through everything: our bodies, our planet, even the entire cosmos – without us noticing. These so-called neutrinos are elementary particles that are invisible, incredibly light, and interact only rarely with other matter. The weakness of their interactions makes neutrinos extremely difficult to detect. But when scientists do manage to capture them, they can offer extraordinary insights into the universe. 

What Causes Some People’s Gut Microbes to Produce High Alcohol Levels?

First author Cynthia Hsu examines a stool culture from a patient on an agar plate.
Photo Credit: UC San Diego Health Sciences

A study of people with a rare condition known as auto-brewery syndrome has found a link between gut microbes and symptoms of intoxication, pointing to new treatment strategies.

Researchers at University of California San Diego, Mass General Brigham, and their colleagues have identified specific gut bacteria and metabolic pathways that drive alcohol production in patients with auto-brewery syndrome (ABS). The rare and often misunderstood condition causes people to experience intoxication without drinking alcohol. The study was published in Nature Microbiology on January 8, 2026.

ABS occurs when gut microbes break down carbohydrates and convert them to ethanol (the alcohol found in intoxicating beverages), which then enters the bloodstream. While the metabolism of carbohydrates can produce small amounts of alcohol in everyone, levels can be high enough to cause intoxication in people with ABS. The condition is extremely rare but likely underdiagnosed due to a lack of awareness, diagnostic challenges, and stigma.

Featured Article

Hidden heartache of losing an animal companion

Chimmi April 09, 2010 -February 23, 2025 My best friend. Photo Credit: Heidi-Ann Fourkiller The emotional toll of losing a beloved pet durin...

Top Viewed Articles