. Scientific Frontline: Terahertz microscope reveals the motion of superconducting electrons

Wednesday, February 4, 2026

Terahertz microscope reveals the motion of superconducting electrons

An artist’s depiction of a superfluid plasmonic wave. With the terahertz scope, the team observed a frictionless “superfluid” of superconducting electrons that were collectively jiggling back and forth at terahertz frequencies.
Image Credit: Alexander von Hoegen
(CC BY-NC-ND 4.0)

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Physicists developed a novel terahertz microscope that overcomes the diffraction limit to directly visualize the collective quantum motions of superconducting electrons.
  • Methodology: The team utilized spintronic emitters interfaced with a Bragg mirror to generate sharp terahertz pulses, positioning the sample in the near-field to compress the light beam significantly below its natural wavelength.
  • Key Data: The instrument successfully resolved superfluid oscillations in bismuth strontium calcium copper oxide (BSCCO) at terahertz frequencies (trillions of cycles per second), enabling imaging of features far smaller than the standard 100-micron terahertz wavelength.
  • Significance: This breakthrough provides the first direct observation of superfluid plasmonic waves, effectively bridging the gap between the macro-scale wavelength of terahertz light and micro-scale quantum phenomena.
  • Future Application: Findings will accelerate the development of next-generation terahertz wireless communication devices and aid in the characterization of room-temperature superconducting materials.
  • Branch of Science: Condensed Matter Physics and Photonics
  • Additional Detail: The imaging revealed a distinctive "jiggling" motion of the electron superfluid, identifying a specific collective mode previously predicted but never seen in high-temperature superconductors.

An artist’s depiction of a superfluid wave propagating through a layered superconductor.
Image Credit: Sampson Wilcox and Emily Theobald
(CC BY-NC-ND 4.0)

You can tell a lot about a material based on the type of light you shine at it: Optical light illuminates a material’s surface, while X-rays reveal its internal structures and infrared captures a material’s radiating heat.

Now, MIT physicists have used terahertz light to reveal inherent, quantum vibrations in a superconducting material, which have not been observable until now.

Terahertz light is a form of energy that lies between microwaves and infrared radiation on the electromagnetic spectrum. It oscillates over a trillion times per second — just the right pace to match how atoms and electrons naturally vibrate inside materials. Ideally, this makes terahertz light the perfect tool to probe these motions.

But while the frequency is right, the wavelength — the distance over which the wave repeats in space — is not. Terahertz waves have wavelengths hundreds of microns long. Because the smallest spot that any kind of light can be focused into is limited by its wavelength, terahertz beams cannot be tightly confined. As a result, a focused terahertz beam is physically too large to interact effectively with microscopic samples, simply washing over these tiny structures without revealing fine detail.

In a paper appearing today in the journal Nature, the scientists report that they have developed a new terahertz microscope that compresses terahertz light down to microscopic dimensions. This pinpoint of terahertz light can resolve quantum details in materials that were previously inaccessible.

The team used the new microscope to send terahertz light into a sample of bismuth strontium calcium copper oxide, or BSCCO (pronounced “BIS-co”) — a material that superconducts at relatively high temperatures. With the terahertz scope, the team observed a frictionless “superfluid” of superconducting electrons that were collectively jiggling back and forth at terahertz frequencies within the BSCCO material.

“This new microscope now allows us to see a new mode of superconducting electrons that nobody has ever seen before,” says Nuh Gedik, the Donner Professor of Physics at MIT.

By using terahertz light to probe BSCCO and other superconductors, scientists can gain a better understanding of properties that could lead to long-coveted room-temperature superconductors. The new microscope can also help to identify materials that emit and receive terahertz radiation. Such materials could be the foundation of future wireless, terahertz-based communications, that could potentially transmit more data at faster rates compared to today’s microwave-based communications.

“There’s a huge push to take Wi-Fi or telecommunications to the next level, to terahertz frequencies,” says Alexander von Hoegen, a postdoc in MIT’s Materials Research Laboratory and lead author of the study. “If you have a terahertz microscope, you could study how terahertz light interacts with microscopically small devices that could serve as future antennas or receivers.”

In addition to Gedik and von Hoegen, the study’s MIT co-authors include Tommy Tai, Clifford Allington, Matthew Yeung, Jacob Pettine, Alexander Kossak, Byunghun Lee, and Geoffrey Beach, along with collaborators at Harvard University, the Max Planck Institute for the Structure and Dynamics of Matter, the Max Planck Institute for the Physics of Complex Systems and the Brookhaven National Lab.

Hitting a limit

Terahertz light is a promising yet largely untapped imaging tool. It occupies a unique spectral “sweet spot”: Like microwaves, radio waves, and visible light, terahertz radiation is nonionizing and therefore does not carry enough energy to cause harmful radiation effects, making it safe for use in humans and biological tissues. At the same time, much like X-rays, terahertz waves can penetrate a wide range of materials, including fabric, wood, cardboard, plastic, ceramics, and even thin brick walls.

Owing to these distinctive properties, terahertz light is being actively explored for applications in security screening, medical imaging, and wireless communications. In contrast, far less effort has been devoted to applying terahertz radiation to microscopy and the illumination of microscopic phenomena. The primary reason is a fundamental limitation shared by all forms of light: the diffraction limit, which restricts spatial resolution to roughly the wavelength of the radiation used.

With wavelengths on the order of hundreds of microns, terahertz radiation is far larger than atoms, molecules, and many other microscopic structures. As a result, its ability to directly resolve microscale features is fundamentally constrained.

“Our main motivation is this problem that, you might have a 10-micron sample, but your terahertz light has a 100-micron wavelength, so what you would mostly be measuring is air, or the vacuum around your sample,” von Hoegen explains. “You would be missing all these quantum phases that have characteristic fingerprints in the terahertz regime.”

Zooming in

The team found a way around the terahertz diffraction limit by using spintronic emitters — a recent technology that produces sharp pulses of terahertz light. Spintronic emitters are made from multiple ultrathin metallic layers. When a laser illuminates the multilayered structure, the light triggers a cascade of effects in the electrons within each layer, such that the structure ultimately emits a pulse of energy at terahertz frequencies.

By holding a sample close to the emitter, the team trapped the terahertz light before it had a chance to spread, essentially squeezing it into a space much smaller than its wavelength. In this regime, the light can bypass the diffraction limit to resolve features that were previously too small to see.

The MIT team adapted this technology to observe microscopic, quantum-scale phenomena. For their new study, the team developed a terahertz microscope using spintronic emitters interfaced with a Bragg mirror. This multilayered structure of reflective films successively filters out certain, undesired wavelengths of light while letting through others, protecting the sample from the “harmful” laser which triggers the terahertz emission.

As a demonstration, the team used the new microscope to image a small, atomically thin sample of BSCCO. They placed the sample very close to the terahertz source and imaged it at temperatures close to absolute zero — cold enough for the material to become a superconductor. To create the image, they scanned the laser beam, sending terahertz light through the sample and looking for the specific signatures left by the superconducting electrons.

“We see the terahertz field gets dramatically distorted, with little oscillations following the main pulse,” von Hoegen says. “That tells us that something in the sample is emitting terahertz light, after it got kicked by our initial terahertz pulse.”

With further analysis, the team concluded that the terahertz microscope was observing the natural, collective terahertz oscillations of superconducting electrons within the material.

“It’s this superconducting gel that we’re sort of seeing jiggle,” von Hoegen says.

This jiggling superfluid was expected, but never directly visualized until now. The team is now applying the microscope to other two-dimensional materials, where they hope to capture more terahertz phenomena.

“There are a lot of the fundamental excitations, like lattice vibrations and magnetic processes, and all these collective modes that happen at terahertz frequencies,” von Hoegen says. “We can now resonantly zoom in on these interesting physics with our terahertz microscope.”

Funding: This research was supported, in part, by the U.S. Department of Energy and by the Gordon and Betty Moore Foundation.

Published in journal: Nature

TitleImaging a terahertz superfluid plasmon in a two-dimensional superconductor

Authors: A. von Hoegen, T. Tai, C. J. Allington, M. Yeung, J. Pettine, M. H. Michael, E. Viñas Boström, X. Cui, K. Torres, A. E. Kossak, B. Lee, G. S. D. Beach, G. D. Gu, A. Rubio, P. Kim, and N. Gedik

Source/CreditMassachusetts Institute of Technology | Jennifer Chu

Reference Number: phy020426_01

Privacy Policy | Terms of Service | Contact Us

Featured Article

What Is: Cosmic Event Horizon

The Final Boundary An illustration of the Cosmic Event Horizon. Unlike the Observable Universe, which is defined by light that has reached u...

Top Viewed Articles