. Scientific Frontline: Search results for schizophrenia
Showing posts sorted by date for query schizophrenia. Sort by relevance Show all posts
Showing posts sorted by date for query schizophrenia. Sort by relevance Show all posts

Wednesday, February 4, 2026

Tiny mutation, big impact on schizophrenia treatment

Image Credit: Scientific Frontline

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers identified a rare genetic mutation, C182F, within the TAAR1 brain receptor that completely negates the efficacy of newer schizophrenia treatments by structurally locking the receptor in an inactive state.
  • Methodology: The study employed advanced cell biology assays and 500-nanosecond molecular dynamics simulations to analyze the variant, which was originally isolated from an Indian family with a history of schizophrenia.
  • Key Data: In the homozygous state, the mutation caused a complete loss of receptor signaling function and reduced protein surface expression by approximately 40%, while heterozygous cells retained only about 50% activity.
  • Significance: This discovery explains the clinical failure of promising TAAR1 agonists like ulotaront in certain patients, revealing that the mutation eliminates the critical disulfide bond "tent pole" needed for the drug to bind effectively.
  • Future Application: Standard psychiatric care may evolve to include mandatory genetic screening for TAAR1 variants prior to prescribing specific antipsychotics to ensure alignment with the patient's pharmacogenomic profile.
  • Branch of Science: Pharmacogenomics and Molecular Psychiatry.
  • Additional Detail: While rare globally, the C182F mutation occurs more frequently in South Asian populations, highlighting a specific demographic necessity for targeted genetic testing in drug development.

Tuesday, January 13, 2026

One way brain ‘conductors’ find precise connection to target cells

Visualizations of cells in mouse brains show that under normal conditions (left), the connection between chandelier cells and the axon initial segment (AIS) in pyramidal cells results in the placement of synapses, dyed pink, on the AIS. At right, when genes carrying instructions for the protein gliomedin are deleted, fewer synapses are formed on the AIS — an indication that gliomedin is necessary for the “handshake” between the two cell types.
Image Credit: Hiroki Taniguchi and Yasufumi Hayano

Scientific Frontline: "At a Glance" Summary

  • Discovery of Synaptic "Handshake" Mechanism: Researchers identified the specific molecular interaction that allows chandelier cells (inhibitory interneurons) to precisely locate and connect to the axon initial segment (AIS) of excitatory pyramidal neurons.
  • Identification of Key Proteins: The process is governed by the binding of gliomedin, a cell surface molecule enriched in chandelier cells, to neurofascin-186, a receptor localized specifically at the AIS of target neurons.
  • Methodological Validation: Using RNA sequencing and genetic manipulation in mouse models, the team demonstrated that deleting the genes for these proteins significantly reduced synapse formation, while overexpressing them increased synaptic density.
  • Strategic Precision of Innervation: The connection occurs at the AIS, the "faucet" of the neuron where action potentials are generated; this allows a single chandelier cell to exert powerful inhibitory control over hundreds of excitatory cells simultaneously.
  • Clinical Relevance: Disruption of this precise "handshake" and the resulting circuit imbalance are linked to the pathophysiology of neurodevelopmental and psychiatric disorders, including epilepsy, schizophrenia, and autism.
  • Future Research Directions: The study establishes a systematic framework for investigating the molecular markers that guide other specialized inhibitory interneurons in organizing complex brain circuitry.

Schizophrenia: The cerebellum’s unexpected role

Illustrative image of the connectivity between the cerebellum and the VTA.
Image Credit: © Thomas Bolton

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: The cerebellum acts as a critical regulator of the brain's reward system, directly influencing the severity of "negative" schizophrenia symptoms such as apathy, loss of motivation, and social withdrawal.
  • Specific Detail/Mechanism: Functional analysis reveals that the cerebellum modulates the dopamine-producing ventral tegmental area (VTA); stronger cerebellar regulation correlates with reduced negative symptoms, while weaker regulation is linked to increased symptom severity.
  • Key Statistic or Data: The study established these findings by monitoring 146 patients over a period of 3 to 9 months, utilizing an independent validation cohort to confirm the functional connectivity between the cerebellum and the VTA.
  • Context or Comparison: Unlike the VTA, which is located deep within the brain and is difficult to target, the cerebellum is situated superficially at the back of the skull, making it accessible for non-invasive interventions.
  • Significance/Future Application: This mechanism identifies the cerebellum as a viable target for Transcranial Magnetic Stimulation (TMS); a randomized controlled trial is currently underway to test this therapeutic approach, with results expected in 2028.
  • Additional Critical Detail: This research challenges the traditional view of the cerebellum as solely a motor control center, highlighting its pivotal role in emotional and cognitive processing relevant to psychiatric disorders.

Monday, January 12, 2026

How brain waves shape our sense of self

Participants took part in an experiment called the rubber hand illusion in Henrik Ehrsson's lab at Karolinska Institutet.
Photo Credit: Martin Stenmark

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Alpha oscillations in the parietal cortex function as the primary neural mechanism for distinguishing one’s own body from the external environment by regulating the integration of sensory signals.
  • Methodology: Researchers combined the "rubber hand illusion" with EEG recordings, computational modeling, and non-invasive electrical brain stimulation across 106 participants to causally link brain wave speeds to perception.
  • Mechanism: The specific frequency of alpha waves determines the brain's "temporal binding window"; faster oscillations create a higher temporal resolution, allowing for a precise rejection of asynchronous (non-self) stimuli.
  • Key Correlation: Individuals with naturally slower alpha frequencies demonstrated a broader integration window, causing the brain to erroneously merge mismatched visual and tactile inputs into a false sense of body ownership.
  • Significance: These findings establish a physiological target for treating self-disorders in conditions like schizophrenia and provide a blueprint for improving the "embodiment" of prosthetic limbs and virtual reality systems.

Saturday, January 10, 2026

What Is: Organoid

Organoids: The Science and Ethics of Mini-Organs
Image Credit: Scientific Frontline / AI generated

The "At a Glance" Summary

  • Defining the Architecture: Unlike traditional cell cultures, organoids are 3D structures grown from pluripotent stem cells (iPSCs) or adult stem cells. They rely on the cells' intrinsic ability to self-organize, creating complex structures that mimic the lineage and spatial arrangement of an in vivo organ.
  • The "Avatar" in the Lab: Organoids allow for Personalized Medicine. By growing an organoid from a specific patient's cells, researchers can test drug responses on a "digital twin" of that patient’s tumor or tissue, eliminating the guesswork of trial-and-error prescriptions.
  • Bridge to Clinical Trials: Organoids serve as a critical bridge between the Petri dish and human clinical trials, potentially reducing the failure rate of new drugs and decreasing the reliance on animal testing models which often fail to predict human reactions.
  • The Ethical Frontier: As cerebral organoids (mini-brains) become more complex, exhibiting brain waves similar to preterm infants, science faces a profound question: At what point does biological complexity become sentience?

Friday, January 2, 2026

Researchers create cells that help the brain keep its cool

Parvalbumin cells play a central role in keeping brain activity in equilibrium. They control nervcell signalling, reduce overactivity and make sure that the brain is working to a rhythm
Image Credit: Scientific Frontline

Researchers at Lund University in Sweden have created a method that makes it possible to transform the brain’s support cells into parvalbumin-positive cells. These cells act as the brain’s rapid-braking system and are significantly involved in schizophrenia, epilepsy, and other neurological conditions. 

Parvalbumin cells play a central role in keeping brain activity in equilibrium. They control nerve cell signaling, reduce overactivity and make sure that the brain is working to a rhythm. Researchers sometimes describe them as the cells that “make the brain sound right”. 

When these cells malfunction or decrease in number, the balance of the brain is disrupted. Previous studies suggest that damaged parvalbumin cells may contribute to disorders such as schizophrenia and epilepsy.  

Saturday, December 27, 2025

Psychology: In-Depth Description

Image Credit: Scientific Frontline / stock image

Psychology is the scientific study of the mind and behavior, encompassing all aspects of conscious and unconscious experience as well as thought. Its primary goals are to describe, explain, predict, and control behavior and mental processes to understand the complexities of human nature and improve individual and societal well-being.

Psychiatry: In-Depth Description

Scientific Frontline / stock image

Psychiatry is the branch of medicine exclusively dedicated to the diagnosis, treatment, and prevention of mental, emotional, and behavioral disorders.

Unlike psychology, which is the study of the mind and behavior, psychiatry is a medical discipline. Psychiatrists are qualified medical doctors (MD or DO) who specialize in the complex intersection of physical and mental health. The primary goal of the field is to alleviate suffering and improve well-being by managing conditions ranging from transient emotional crises to chronic, life-altering mental illnesses through a combination of pharmacological, psychotherapeutic, and psychosocial interventions.

Monday, December 22, 2025

Neuroscience: In-Depth Description

Image Credit: Scientific Frontline / stock image

Neuroscience is the multidisciplinary scientific study of the nervous system, encompassing the brain, spinal cord, and peripheral nerves. Its primary goal is to understand the biological basis of consciousness, perception, memory, and behavior by investigating the structure, function, genetics, biochemistry, physiology, and pathology of nervous tissue.

Wednesday, November 26, 2025

Coffee linked to slower biological ageing among those with severe mental illness – up to a limit

Photo Credit: Julia Florczak

New research from King’s College London finds that coffee consumption within the NHS recommended limit is linked to longer telomere lengths – a marker of biological ageing – among people with bipolar disorder and schizophrenia. The effect is comparable to roughly five years younger biological age. 

Telomeres are structures that protect DNA. As people get older, their telomeres shorten as part of the natural human ageing process. This process has been shown to be accelerated among people with severe mental illness, such as bipolar disorder and schizophrenia, who have an average life expectancy 15 years shorter than the general population. 

Previous research shows that coffee has health benefits. It may reduce oxidative stress in the general population, helping slow biological ageing processes like telomere shortening. The new study, published in BMJ Mental Health, explores whether coffee consumption could slow this ageing process among those with severe mental illness. 

Tuesday, October 28, 2025

Rare Brain Cell May Hold the Key to Preventing Schizophrenia Symptoms

A new study from the University of Copenhagen shows that a targeted intervention in a specific type of brain cell can change behavior in mice with symptoms resembling schizophrenia. The researchers hope that this knowledge may eventually pave the way for more targeted treatments for conditions such as schizophrenia.
Image Credit: Scientific Frontline / AI generated

A specific type of brain cell is abnormally active in mice exhibiting behavior reminiscent of schizophrenia, according to a new study from the University of Copenhagen. By dampening the activity of these cells, researchers were able to restore the animals’ behavior—an insight that may pave the way for a new preventive treatment.

Difficulty completing everyday tasks. Failing memory. Unusually poor concentration.

For many people living with schizophrenia, cognitive challenges are part of daily life. Alongside well-known symptoms such as hallucinations and delusions, these difficulties can make it hard to live the life they want. That is why researchers at the University of Copenhagen are working to find ways to prevent such symptoms - and they may now be one step closer.

In a new study, researchers discovered that a specific type of brain cell is abnormally active in mice displaying schizophrenia-like behavior. When the researchers reduced the activity of these cells, the mice’s behavior changed.

“Current treatments for cognitive symptoms in patients with diagnoses such as schizophrenia are inadequate. We need to understand more about what causes these cognitive symptoms that are derived from impairments during brain development. Our study may be the first step toward a new, targeted treatment that can prevent cognitive symptoms,” says Professor Konstantin Khodosevich from the Biotech Research and Innovation Center at the University of Copenhagen, and one of the researchers behind the study.

Monday, October 13, 2025

Large Genetic Study Links Cannabis Use to Psychiatric, Cognitive and Physical Health

The study uncovered new relationships between gene variants associated with cannabis use and psychiatric, cognitive and physical health.
Image Credit: Scientific Frontline / AI generated

University of California San Diego of Medicine researchers, in collaboration with the genetic testing company 23andMe, have identified regions of the human genome associated with cannabis use, uncovering new relationships with psychiatric, cognitive and physical health. The findings may inform the development of prevention and treatment strategies for cannabis use disorder. The study was published on October 13, 2025 in Molecular Psychiatry.

“Cannabis is widely used, but its long-term effects on health remain poorly characterized,” said Sandra Sanchez-Roige, Ph.D., associate professor of psychiatry at UC San Diego School of Medicine and senior author of the study. The researchers were also interested in the relationship between genetics and traits that contribute to the development of cannabis use disorder, which can interfere with a person’s daily life.

“While most people who try cannabis do not go on to develop cannabis use disorder, some studies estimate that nearly 30% will,” said Sanchez-Roige. “Understanding the genetics of early-stage behaviors may help clarify who is at greater risk, opening the door to prevention and intervention strategies.”

Saturday, September 27, 2025

What Is: Schizophrenia

 

Image Credit: Scientific Frontline

Beyond the Misconceptions

Schizophrenia is one of the most misunderstood mental health conditions. It is not, as commonly portrayed, a "split personality" (that is a separate, rare condition called dissociative identity disorder). Rather, schizophrenia is a chronic and severe mental disorder that affects how a person thinks, feels, and behaves. At its core, it is a disorder of cognition and reality testing, characterized by a "fracturing" of the mind's essential functions, leading to a disconnect from reality for the individual experiencing it.

Globally, schizophrenia affects approximately 24 million people, or 1 in 300 worldwide. It is a universal human illness that does not discriminate based on race, culture, or socioeconomic status.

Wednesday, September 24, 2025

Early changes during brain development may hold the key to autism and schizophrenia

Photo Credit: Michal Jarmoluk

Researchers at the University of Exeter have created a detailed temporal map of chemical changes to DNA through development and aging of the human brain, offering new insights into how conditions such as autism and schizophrenia may arise.

The team studied epigenetic changes – chemical tags on our DNA that control how genes are switched on or off. These changes are crucial in regulating the expression of genes, guiding brain cells to develop and specialize correctly.

One important mechanism, called DNA methylation, was examined in nearly 1,000 donated human brains, spanning life from just six weeks after conception through to 108 years of age. The researchers focused on the cortex, a region of the brain involved in high-level functions such as thought, memory, perception, and behavior. Correct development of the cortex during early life is important to support healthy brain function after birth.

Monday, February 10, 2025

How Does the Brain Differentiate New Stimuli from Old Ones?

The illustration represents how sounds are encoded in the cerebral cortex, with neurons (at right) using "echoing" activity to track auditory stimuli to change and improve its predictions of the future.
Illustration Credit: Yuriy Shymkiv

The cerebral cortex is the largest part of a mammal’s brain, and by some measures the most important. In humans in particular, it’s where most things happen—like perception, thinking, memory storage, and decision-making. One current hypothesis suggests that the cortex’s primary role is to predict what’s going to happen in the future by identifying and encoding new information it receives from the outside world and comparing it with what was expected to occur.

A new study published today in the journal Neuron takes a big step toward proving that hypothesis. The paper’s lead author is Yuriy Shymkiv, a postdoctoral fellow in the lab of Professor Rafael Yuste.

“We found that the cortex acts like a memory machine, encoding new experiences, and predicting the very near future,” Shymkiv said.

Monday, January 27, 2025

Researchers detect that people with schizophrenia have an altered ability to visually perceive contrast

UB researchers Cristina de la Malla and Daniel Linares.
Photo Credit: Courtesy of University of Barcelona

According to a review of more than 600 studies, these patients would have difficulty in detecting differences in light intensity between adjacent areas, without which they cannot adequately see their surroundings and objects.

The article, published in the journal Schizophrenia Bulletin, is signed by researchers Daniel Linares and Cristina de la Malla, together with master’s student Aster Joostens, from the Vision and Control of Action Group of the Faculty of Psychology and the UB Institute of Neurosciences (UBneuro).

A key indicator of visual function

The symptoms of schizophrenia are characterized by alterations in thinking and behavior, such as loss of contact with reality, delusions or hallucinations, but there are also abnormalities in the perception of visual stimuli, such as deficits in the perception of color or contrast. Understanding these abnormalities may provide clues as to how information processing disturbances contribute to the characteristic symptoms of schizophrenia. “Contrast perception is one of the most fundamental abilities of vision, as without it, we cannot adequately perceive the environment and the objects in it, which can compromise everyday tasks such as moving through space, recognizing faces or reading”, explains the research team, part of the Department of Cognition, ​​​​​​​Development and Educational Psychology.

Thursday, January 23, 2025

Eight Psychiatric Disorders Share the Same Genetic Causes

Image Credit: Won Lab

Building off previous groundbreaking research, a new study identifies specific genetic variants that have significant impacts on brain development and are shared across eight different psychiatric disorders. Targeting these variants could pave the way for treatments that address multiple conditions at once.

Psychiatric disorders often overlap and can make diagnosis difficult. Depression and anxiety, for example, can coexist and share symptoms. Schizophrenia and anorexia nervosa. Autism and attention deficit/hyperactivity disorder, too. But, why?

Life experiences, environment, and genetics can all influence psychiatric disorders, but much of it comes down to variations in our genetics. Over the past few years, scientists in the field of psychiatric genetics have found that there are common genetic threads that may be linking and causing coexisting psychiatric disorders.

In 2019, researchers at the Psychiatric Genomics Consortium, Harvard University, and the UNC School of Medicine identified 136 “hot spots” within the genome that are associated with eight psychiatric disorders. Among them, 109 hot spots were shared among multiple disorders, or “pleiotropic”. However, it was not clear at the time how genetic variations within these hot spots differed from those that only have roles in only one disorder.

Tuesday, April 2, 2024

Pilot study shows ketogenic diet improves severe mental illness

A study led by researchers at Stanford Medicine showed that diet can help those with serious mental illness.
Video Credit: Stanford Medicine

For people living with serious mental illness like schizophrenia or bipolar disorder, standard treatment with antipsychotic medications can be a double-edged sword. While these drugs help regulate brain chemistry, they often cause metabolic side effects such as insulin resistance and obesity, which are distressing enough that many patients stop taking the medications.

Now, a pilot study led by Stanford Medicine researchers has found that a ketogenic diet not only restores metabolic health in these patients as they continue their medications, but it further improves their psychiatric conditions. The results published in Psychiatry Research, suggest that a dietary intervention can be a powerful aid in treating mental illness.

“It’s very promising and very encouraging that you can take back control of your illness in some way, aside from the usual standard of care,” said Shebani Sethi, MD, associate professor of psychiatry and behavioral sciences and the first author of the new paper.

Friday, March 29, 2024

Risk factors for faster aging in the brain revealed in new study

Governments have been urged to act decisively before 2035 to ensure global warming can be kept below 2°C by 2100.
Photo Credit: Nöel Puebla

Researchers from the Nuffield Department of Clinical Neurosciences at the University of Oxford have used data from UK Biobank participants to reveal that diabetes, traffic-related air pollution and alcohol intake are the most harmful out of 15 modifiable risk factors for dementia.

The researchers had previously identified a ‘weak spot’ in the brain, which is a specific network of higher-order regions that not only develop later during adolescence, but also show earlier degeneration in old age. They showed that this brain network is also particularly vulnerable to schizophrenia and Alzheimer’s disease.

In this new study, published in Nature Communications, they investigated the genetic and modifiable influences on these fragile brain regions by looking at the brain scans of 40,000 UK Biobank participants aged over 45.

The researchers examined 161 risk factors for dementia, and ranked their impact on this vulnerable brain network, over and above the natural effects of age. They classified these so-called ‘modifiable’ risk factors − as they can potentially be changed throughout life to reduce the risk of dementia − into 15 broad categories: blood pressure, cholesterol, diabetes, weight, alcohol consumption, smoking, depressive mood, inflammation, pollution, hearing, sleep, socialization, diet, physical activity, and education.

Thursday, February 22, 2024

How bats distinguish different sounds

Seba's short-tailed bat (Carollia perspicillata) filters out important signals from ambient sound and distinguishes between echolocation and communication calls.
Photo Credit: Julio Hechavarría, Goethe University Frankfurt

Bats live in a world of sounds. They use vocalizations both to communicate with their conspecifics and for navigation. For the latter, they emit sounds in the ultrasonic range, which echo and enable them to create an “image" of their surroundings. Neuroscientists at Goethe University Frankfurt have now discovered how Seba's short-tailed bat, a species native to South America, manages to filter out important signals from ambient sound and especially to distinguish between echolocation and communication calls. 

Seba's short-tailed bat (Carollia perspicillata) lives in the subtropical and tropical forests of Central and South America, where it mostly feeds on pepper fruit. The animals spend their days in groups of 10 to 100 individuals in hollow trunks and rocky caverns, and at night they go foraging together. They communicate using sounds that create distinct ambient noise in the colony – like the babble of voices at a lively party. At the same time, the bats also use vocalizations to navigate their surroundings: a phenomenon known as echolocation, for which they emit ultrasonic sounds that reflect off solid surfaces. The animals then assemble these echoes into an “image" of their surroundings. 

Featured Article

Temperature of some cities could rise faster than expected under 2°C warming

Cities are often warmer than rural areas due to a phenomenon known as the urban heat island, which can be influenced by various factors, suc...

Top Viewed Articles