![]() |
| Retinitis pigmentosa is the most common hereditary retinal disease in humans, with a prevalence of one in every 4,000 people worldwide. Photo by Danish Ahmad |
Retinitis pigmentosa, a degenerative genetic disease of the eye, is characterized by progressive vision loss, usually leading to blindness. In some patients, structural defects in the photoreceptor cells have been observed, but the molecular mechanisms involved are not understood. A team from the University of Geneva (UNIGE), in collaboration with the University of Lausanne (UNIL), has identified the essential role played by a molecular zipper formed by four proteins. The absence of this zipper leads to cell death in retinal cells. This discovery could lead to the development of therapeutic approaches for retinitis pigmentosa. This work can be read in the journal PLOS Biology.
Retinitis pigmentosa is the most common hereditary retinal disease in humans, with a prevalence of one in every 4,000 people worldwide. The first symptoms usually appear between the ages of 10 and 20 with a loss of night vision. Thereafter, the visual field narrows into a “tunnel vision” to finally lead to blindness around the age of 40. This disease is characterized by a degeneration of the light sensitive cells, the photoreceptors.
These specialized neuronal cells of the retina are responsible for the conversion of light into a nerve signal. The outer segment of the cell is made up of stacks of discs on which the light-sensitive pigments are located. The inner segment contains all the metabolic machinery essential to the functioning of the cell and is linked to the outer segment by the connecting cilium.








