![]() |
| Credit: Pete Linforth |
High nutrient inputs in grassland lead to more plant species being lost than new ones can establish over longer periods of time. In addition, fewer new species settle than under natural nutrient availability. A worldwide experiment led by the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the Martin Luther University Halle-Wittenberg (MLU) has now been able to show why additional nutrient inputs reduce plant diversity in grasslands. The study published in "Ecology Letters", also sheds light on another issue: The increase in biomass with nutrient inputs is due to a few plant species that can use higher nutrient inputs to their advantage and remain successfully at a site over long periods of time.
One of the reasons for the global threat to biodiversity is that we humans introduce more nutrients into our environment than would naturally be present there, for example, when fertilizing agricultural land. In addition, precipitation re-distributes excess nutrients to other areas, and nutrients can also enter our soil through air pollution.
Natural grasslands are a habitat for many different plant species including grasses, herbs, wildflowers and orchids, many of which can be threatened by human activities and impacts. Plants need three things to grow: carbon dioxide (CO2) from the air, water and nutrients from the soil. The latter are usually scarce in semi-natural European meadows. Although this limits the growth of individual plants, it Favours the possibility of many different species growing side by side. Excessive amounts of nutrients, however, create the image that is ubiquitous in our landscape today: lush green meadows but without the colorful flowers of former times.

.jpg)

.jpg)




.jpg)
.jpg)