![]() |
| Conceptualization of the role of methanediamine in the galactic cosmic ray mediated synthesis of DNA and RNA bases in deep space. Illustration Credit: University of Hawaiʻi |
The synthetic production of a critical building block called methanediamine for the first time by researchers in University of Hawaiʻi at Mānoa’s Department of Chemistry could lead to key insights into the origins of life. The researchers have discovered a method to produce it in a lab under conditions that mimic icy interstellar nanoparticles in cold molecular clouds in space.
Nitrogen is the most abundant element in Earth’s atmosphere. It is also incorporated into nearly one-third of some 300 molecules identified in the interstellar medium, which is the material that exists in the space between the stars in a galaxy.
Most nitrogen-containing molecules in deep space carry exclusively the nitrile moiety (organic compound that has a carbon, nitrogen functional group), while amines (a member of a family of nitrogen-containing organic compounds that is derived from ammonia) and imines (compounds containing a carbon-nitrogen double bond) are relatively rare. According to experts, an understanding of the origin of these less common molecule parts in deep space is central to the hypothesis for the origin of life because all nucleobases (nitrogen-containing compounds) found in contemporary RNA and DNA contain amines and imines.

_1.jpg)
.jpg)



.jpg)
.jpg)
