. Scientific Frontline

Monday, June 5, 2023

Computational model mimics humans’ ability to predict emotions

While a great deal of research has gone into training computer models to infer someone’s emotional state based on their facial expression, that is not the most important aspect of human emotional intelligence, says MIT Professor Rebecca Saxe. Much more important is the ability to predict someone’s emotional response to events before they occur.
Image Credit: Christine Daniloff, MIT
(CC BY-NC-ND 3.0)

When interacting with another person, you likely spend part of your time trying to anticipate how they will feel about what you’re saying or doing. This task requires a cognitive skill called theory of mind, which helps us to infer other people’s beliefs, desires, intentions, and emotions.

MIT neuroscientists have now designed a computational model that can predict other people’s emotions — including joy, gratitude, confusion, regret, and embarrassment — approximating human observers’ social intelligence. The model was designed to predict the emotions of people involved in a situation based on the prisoner’s dilemma, a classic game theory scenario in which two people must decide whether to cooperate with their partner or betray them. 

To build the model, the researchers incorporated several factors that have been hypothesized to influence people’s emotional reactions, including that person’s desires, their expectations in a particular situation, and whether anyone was watching their actions.

“These are very common, basic intuitions, and what we said is, we can take that very basic grammar and make a model that will learn to predict emotions from those features,” says Rebecca Saxe, the John W. Jarve Professor of Brain and Cognitive Sciences, a member of MIT’s McGovern Institute for Brain Research, and the senior author of the study.

PSI researchers use extreme UV light to produce tiny structures for information technology.

The PSI researchers involved at the XIL-II beamline of the SLS. From left to right: Yasin Ekinci, Gabriel Aeppli, Matthias Muntwiler, Procopios Christou Constantinou, Dimitrios Kazazis, Prajith Karadan
Photo Credit: Paul Scherrer Institute/Mahir Dzambegovic

Researchers at PSI have refined a process known as photolithography, which can further advance miniaturization in information technology.

In many areas of information technology, the trend towards ever more compact microchips continues unabated. This is mainly because production processes make it possible to achieve ever smaller structures, so that the same number of information-processing components takes up less and less space. Fitting more components into less space increases the performance and lowers the price of the microchips used in smartphones, smartwatches, game consoles, televisions, Internet servers and industrial applications.

A research group led by Dimitrios Kazazis and Yasin Ekinci at the Laboratory for X-ray Nanoscience and Technologies at the Paul Scherrer Institute PSI, in collaboration with researchers from University College London (UCL) in the UK, has now succeeded in making important progress towards further miniaturization in the IT industry. The scientists have demonstrated that photolithography – the method of patterning widely used in the mass production of microchips – works even when no photosensitive layer has been applied to the silicon.

How Studying Poop May Help Us Boost White Rhino Populations

White Rhinoceros with baby, being protected from poachers. Shot in the Kruger National Park, South Africa.
Photo Credit: Nadine Venter

Researchers at North Carolina State University have identified significant differences in the gut microbiome of female southern white rhinos who are reproducing successfully in captivity, as compared to females who have not reproduced successfully in captivity. The work raises questions about the role that a particular genus of gut microbes may be playing in limiting captive breeding of this rhinoceros species.

“Our work focuses on the southern white rhinoceros (Ceratotherium simum simum), because while it is not yet endangered, species numbers are declining in the wild due to poaching,” says Christina Burnham, first author of a paper on the work and a former graduate student at NC State.

“There is a significant population of southern white rhinos under human care in the United States, but there have been challenges in getting many of these animals to reproduce successfully. It is critical we understand why, as the managed rhinos serve as important assurance populations in case wild rhino numbers continue to fall. We wanted to know how the gut microbiome may influence the reproductive ability of these rhinos.”

Women more likely to experience repeat Toxoplasmosis

Ocular syphilis on the rise
Video Credit: Flinders University

Women are more likely to experience recurrent cases of the Toxoplasma parasite, according to new Flinders University research.

With the condition putting people at risk of further attacks of toxoplasmosis that can progressively damage the retina and lead to vision loss, international experts have demonstrated that women are also more likely to have more than one lesion in their eyes.

The new study, which analyzed the impact of toxoplasmosis on 262 participants at an eye clinic in Brazil, aims to address differences in the way dangerous infections like toxoplasmosis impact people because of their gender to develop targeted treatments.

Closely associated with cats, Toxoplasma is a parasite that causes the infectious disease known as toxoplasmosis. For humans, while domestic cat feces can be a carrier, the most common route of infection is by eating undercooked or raw meat sourced from infected livestock.

The Rise of Pelagic Fungi and their Crucial Role in Oceanic Ecosystems

Federico Baltar and Eva Breyer in front of their research vessel in Antarctica during a sampling expedition
Photo Credit: Federico Baltar

Mycoplankton plays an active role in the degradation of organic matter and the cycling of nutrients

Fungi plays a vital and previously neglected role in the complex tapestry of marine ecosystems, a study by Eva Breyer and Federico Baltar of the University of Vienna reveals. The results have now been published in the journal Trends in Ecology & Evolution.

Traditionally overlooked and underestimated, recent findings have put the spotlight on the profound importance of pelagic fungi (mycoplankton) as valuable members of oceanic pelagic ecosystems. Thanks to recent technological advances, the scientific community can now harness cutting-edge tools to uncover, characterize, and understand the abundance, diversity, and functional roles played by pelagic fungal taxa and communities within the oceanic realm.

Saving moths may be just as important as saving the bees

More moths were found to be carrying pollen than previously thought, and visiting more types of plant and fruit crops than previously identified
Photo Credit: EyeCandyDesignz

Night-time pollinators such as moths need protecting as effectively as bees, as new research found they could be less resilient to the pressures of urbanization

Night-time pollinators such as moths may visit just as many plants as bees, and should also be the focus of conservation and protection efforts, a new study from the University of Sheffield suggests.

The study found that moths under pressure from urbanization may also be less resilient than bees, due to their more complex life cycle and more specific plant requirements.

It also revealed that despite this threat, moths play a crucial role in supporting urban plant communities, accounting for a third of all pollination in flowering plants, crops and trees.

The researchers suggest that when planning or redeveloping urban areas, supporting the introduction of plant species that are beneficial for moths, as well as bees, will become increasingly important for the health of urban ecosystems.

Thursday, May 18, 2023

Fossil of mosasaur with bizarre “screwdriver teeth” found in Morocco

The strange ridges on the teeth indicate a specialised feeding strategy, however its diet remains a mystery.
Photo Credit: Dr Nick Longrich

Scientists have discovered a new species of mosasaur, a sea-dwelling lizard from the age of the dinosaurs, with strange, ridged teeth unlike those of any known reptile. Along with other recent finds from Africa, it suggests that mosasaurs and other marine reptiles were evolving rapidly up until 66 million years ago, when they were wiped out by an asteroid along with the dinosaurs and around 90% of all species on Earth.

The new species, Stelladens mysterious, comes from the Late Cretaceous of Morocco and was around twice the size of a dolphin.

It had a unique tooth arrangement with blade-like ridges running down the teeth, arranged in a star-shaped pattern, reminiscent of a cross-head screwdriver.

Most mosasaurs had two bladelike, serrated ridges on the front and back of the tooth to help cut prey, however Stelladens had anywhere from four to six of these blades running down the tooth.

“It’s a surprise,” said Dr Nick Longrich from the Milner Centre for Evolution at the University of Bath, who led the study. “It’s not like any mosasaur, or any reptile, even any vertebrate we’ve seen before.”

Past climate change to blame for Antarctica’s giant underwater landslides

Dr Jenny Gales (right) and Professor Rob McKay examine the half-section of a core recovered from the Antarctic seabed
Photo Credit: Justin Dodd

Scientists have discovered the cause of giant underwater landslides in Antarctica which they believe could have generated tsunami waves that stretched across the Southern Ocean.

An international team of researchers, led by Dr Jenny Gales from the University of Plymouth, uncovered layers of weak, fossilized and biologically-rich sediments hundreds of meters beneath the seafloor.

These formed beneath extensive areas of underwater landslides, many of which cut more than 100 meters into the seabed.

Writing in Nature Communications, the scientists say these weak layers – made up of historic biological material – made the area susceptible to failure in the face of earthquakes and other seismic activity.

They also highlight that the layers formed at a time when temperatures in Antarctica were up to 3°C warmer than they are today, when sea levels were higher and ice sheets much smaller than at present.

Researchers identify 10 pesticides toxic to neurons involved in Parkinson’s

Photo Credit: Rosyid Arifin

Researchers at UCLA Health and Harvard have identified 10 pesticides that significantly damaged neurons implicated in the development of Parkinson’s disease, providing new clues about environmental toxins’ role in the disease.

While environmental factors such as pesticide exposure have long been linked to Parkinson’s, it has been harder to pinpoint which pesticides may raise risk for the neurodegenerative disorder. Just in California, the nation’s largest agricultural producer and exporter, there are nearly 14,000 pesticide products with over 1,000 active ingredients registered for use.

Through a novel pairing of epidemiology and toxicity screening that leveraged California’s extensive pesticide use database, UCLA and Harvard researchers were able to identify 10 pesticides that were directly toxic to dopaminergic neurons. The neurons play a key role in voluntary movement, and the death of these neurons is a hallmark of Parkinson’s.

Further, the researchers found that co-exposure of pesticides that are typically used in combinations in cotton farming were more toxic than any single pesticide in that group.

'Charge Density Wave' Linked to Atomic Distortions in Would-be Superconductor

This image shows the positions of atoms (blue spheres) that make up the crystal lattice of a copper-oxide superconductor, superimposed on a map of electronic charge distribution (yellow is high charge density, dark spots are low) in charge-ordered states. Normally, the atoms can vibrate side-to-side (shadows represent average locations when vibrating). But when cooled to the point where the ladder-like charge density wave appears, the atomic positions shift along the "rungs" and the vibrations cease, locking the atoms in place. Understanding these charge-ordered states may help scientists unlock other interactions that trigger superconductivity at lower temperatures.
Illustration Credit: Courtesy of Brookhaven National Laboratory

Precision measurements reveal connection between electron density and atomic arrangements in charge-ordered states of a superconducting copper-oxide material

What makes some materials carry current with no resistance? Scientists are trying to unravel the complex characteristics. Harnessing this property, known as superconductivity, could lead to perfectly efficient power lines, ultrafast computers, and a range of energy-saving advances. Understanding these materials when they aren’t superconducting is a key part of the quest to unlock that potential.

“To solve the problem, we need to understand the many phases of these materials,” said Kazuhiro Fujita, a physicist in the Condensed Matter Physics & Materials Science Department of the U.S. Department of Energy’s Brookhaven National Laboratory. In a new study just published in Physical Review X, Fujita and his colleagues sought to find an explanation for an oddity observed in a phase that coexists with the superconducting phase of a copper-oxide superconductor.

Featured Article

Cat Disease Challenges What Scientists Thought About Coronaviruses

Lychee had feline infectious peritonitis, a feline coronavirus. He was part of a clinical trial at the UC Davis School of Veterinary Medicin...

Top Viewed Articles