![]() |
| Traveling wave propagation directions in the memory task reveal how the brain quickly coordinates activity and shares information across multiple regions. Photo Credit: Hongui Zhang |
In the space of just a few seconds, a person walking down a city block might check their phone, yawn, worry about making rent, and adjust their path to avoid a puddle. The smell from a food cart could suddenly conjure a memory from childhood, or they could notice a rat eating a slice of pizza and store the image as a new memory.
For most people, shifting through behaviors quickly and seamlessly is a mundane part of everyday life.
For neuroscientists, it’s one of the brain’s most remarkable capabilities. That’s because different activities require the brain to use different combinations of its many regions and billions of neurons. How it manages to do this so rapidly has been an open question for decades.
The study
In a paper published in Nature Human Behaviour, a team of researchers, led by Joshua Jacobs, associate professor of biomedical engineering at Columbia Engineering, shed new light on this question. By carefully monitoring neural activity of people who were recalling memories or forming new ones, the researchers managed to detect how a newly appreciated type of brainwave — traveling waves — influences the storage and retrieval of memories.
“Broadly, we found that waves tended to move from the back of the brain to the front while patients were putting something into their memory,” said the paper’s co-author Uma R. Mohan, a postdoctoral researcher at NIH and former postdoctoral researcher in the Electrophysiology, Memory, and Navigation Laboratory at Columbia Engineering. “When patients were later searching to recall the same information, those waves moved in the opposite direction, from the front towards the back of the brain,” she said.

.jpg)




.jpg)


.jpg)