. Scientific Frontline

Monday, March 18, 2024

Alzheimer’s Drug Fermented with Help from AI and Bacteria Moves Closer to Reality

Photo-Illustration Credit: Martha Morales/The University of Texas at Austin

Galantamine is a common medication used by people with Alzheimer’s disease and other forms of dementia around the world to treat their symptoms. Unfortunately, synthesizing the active compounds in a lab at the scale needed isn’t commercially viable. The active ingredient is extracted from daffodils through a time-consuming process, and unpredictable factors, such as weather and crop yields, can affect supply and price of the drug. 

Now, researchers at The University of Texas at Austin have developed tools — including an artificial intelligence system and glowing biosensors — to harness microbes one day to do all the work instead. 

In a paper in Nature Communications, researchers outline a process using genetically modified bacteria to create a chemical precursor of galantamine as a byproduct of the microbe’s normal cellular metabolism.  Essentially, the bacteria are programmed to convert food into medicinal compounds.

“The goal is to eventually ferment medicines like this in large quantities,” said Andrew Ellington, a professor of molecular biosciences and author of the study. “This method creates a reliable supply that is much less expensive to produce. It doesn’t have a growing season, and it can’t be impacted by drought or floods.” 

Keeping score: novel method might help differentiate 2 serious skin diseases

Close-up of skin symptoms   
A scoring system has been developed to help distinguish between the two diseases. Left: generalized pustular psoriasis (GPP). Right: acute generalized exanthematous pustulosis (AGEP).   
Image Credit: Osaka Metropolitan Universit

Two rare skin conditions with similar symptoms can be mistaken for each other, so a scoring system has been formulated to aid physicians in distinguishing two diseases

Your skin becomes red and spots filled with pus appear, so you visit a dermatologist. When these symptoms spread to the skin throughout the body, it is difficult for the physician to distinguish whether it is generalized pustular psoriasis (GPP) or acute generalized exanthematous pustulosis (AGEP), as both have similar symptoms. The two diseases run different courses and require different treatments. Without proper treatment, the symptoms can worsen severely and cause complications, so it is essential to distinguish between them.

Researchers from Osaka Metropolitan University and the Mayo Clinic in the United States have developed a scoring system as a novel tool to distinguish between the two diseases. Led by Dr. Mika Yamanaka-Takaichi and Professor Daisuke Tsuruta, both from the Department of Dermatology at OMU’s Graduate School of Medicine, and Professor Afsaneh Alavi from the Department of Dermatology at the Mayo Clinic in Rochester, Minnesota, the team studied data on clinical symptoms and laboratory findings of the diseases to create the system.

Sandia collaboration produces improved microneedle technology

Adam Bolotsky demonstrates how Sandia National Laboratories, in collaboration with SRI, has enhanced the extraction of interstitial fluid. The improved extraction method gets more fluid in less time.
Photo Credit: Craig Fritz

Microneedles measure only two to three times the diameter of human hair and are about a millimeter long. But their impact is significant, from helping U.S. service members in the field diagnose infections earlier, to helping individuals monitor their own health.

Sandia National Laboratories is at the forefront of microneedle research and is partnering with others to expand the technology.

A microneedle is a minimally invasive way to sample interstitial fluid from under the skin. Interstitial fluid shares many similarities with blood, but there is still much to learn about it.

“When we started work in this field in 2011, our goal was to develop microneedles as a wearable sensor, as an alternate to blood samples,” said Ronen Polsky, who has led Sandia’s work in microneedles. Microneedles can access interstitial fluid for real-time and continuous measurements of circulating biomarkers.

“People wear continuous glucose monitors for blood sugar measurements,” Polsky said. “We want to expand this to a whole range of other conditions to take advantage of this minimally invasive sampling using microneedles.”

Using light to produce medication and plastics more efficiently

Radicals generated by light can only unfold their reactivity as soon as they break out of a kind of "cage" that the solvent forms around them. Researchers in Basel show how to make this "cage escape" more successful and how it leads to more efficient photochemistry.
Illustration Credit: University of Basel, Jo Richers

Anyone who wants to produce medication, plastics or fertilizer using conventional methods needs heat for chemical reactions – but not so with photochemistry, where light provides the energy. The process to achieve the desired product also often takes fewer intermediate steps. Researchers from the University of Basel are now going one step further and are demonstrating how the energy efficiency of photochemical reactions can be increased tenfold. More sustainable and cost-effective applications are now tantalizingly close.

Industrial chemical reactions usually occur in several stages across various interim products. Photochemistry enables shortcuts, meaning fewer intermediate steps are required. Photochemistry also allows you to work with less hazardous substances than in conventional chemistry, as light produces a reaction in substances which do not react well under heat. However, to this point there have not been many industrial applications for photochemistry, partly because supplying energy with light is often inefficient or creates unwanted by-products.

The research group led by Professor Oliver Wenger at the University of Basel now describes a fundamental principle which has an unexpectedly strong impact on the energy efficiency of photochemistry and can increase the speed of photochemical reactions. Their results are published in Nature Chemistry.

Two artificial intelligences talk to each other

A UNIGE team has developed an AI capable of learning a task solely on the basis of verbal instructions. And to do the same with a «sister» AI.
Prompts by Scientific Frontline
Image Credit: AI Generated by Copilot / Designer / DALL-E

Performing a new task based solely on verbal or written instructions, and then describing it to others so that they can reproduce it, is a cornerstone of human communication that still resists artificial intelligence (AI). A team from the University of Geneva (UNIGE) has succeeded in modelling an artificial neural network capable of this cognitive prowess. After learning and performing a series of basic tasks, this AI was able to provide a linguistic description of them to a ‘‘sister’’ AI, which in turn performed them. These promising results, especially for robotics, are published in Nature Neuroscience.

Performing a new task without prior training, on the sole basis of verbal or written instructions, is a unique human ability. What’s more, once we have learned the task, we are able to describe it so that another person can reproduce it. This dual capacity distinguishes us from other species which, to learn a new task, need numerous trials accompanied by positive or negative reinforcement signals, without being able to communicate it to their congeners.

A sub-field of artificial intelligence (AI) - Natural language processing - seeks to recreate this human faculty, with machines that understand and respond to vocal or textual data. This technique is based on artificial neural networks, inspired by our biological neurons and by the way they transmit electrical signals to each other in the brain. However, the neural calculations that would make it possible to achieve the cognitive feat described above are still poorly understood.

Wednesday, March 13, 2024

Explaining a supernova’s ‘string of pearls’

The simulation shows the shape of the gas cloud on the left and the vortices, or regions of rapidly rotating flow, on the right. Each ring represents a later time in the evolution of the cloud. It shows how a gas cloud that starts as an even ring with no rotation becomes a lumpy ring as the vortices develop. Eventually the gas breaks up into distinct clumps.
Illustration Credit: Michael Wadas, Scientific Computing and Flow Laboratory

Physicists often turn to the Rayleigh-Taylor instability to explain why fluid structures form in plasmas, but that may not be the full story when it comes to the ring of hydrogen clumps around supernova 1987A, research from the University of Michigan suggests.

In a study published in Physical Review Letters, the team argues that the Crow instability does a better job of explaining the “string of pearls” encircling the remnant of the star, shedding light on a longstanding astrophysical mystery.

“The fascinating part about this is that the same mechanism that breaks up airplane wakes could be in play here,” said Michael Wadas, corresponding author of the study and a graduate student in mechanical engineering at the time of the work.

In jet contrails, the Crow instability creates breaks in the smooth line of clouds because of the spiraling airflow coming off the end of each wing, known as wingtip vortices. These vortices flow into one another, creating gaps—something we can see because of the water vapor in the exhaust. And the Crow instability can do something that Rayleigh-Taylor could not: predict the number of clumps seen around the remnant.

“The Rayleigh-Taylor instability could tell you that there might be clumps, but it would be very difficult to pull a number out of it,” said Wadas, who is now a postdoctoral scholar at the California Institute of Technology.

Menopause explains why some female whales live so long

Orcas
Photo Credit: NOAA

Females of some whale species have evolved to live drastically longer lives so they can care for their families, new research shows.

The study focused on five whale species that – along with humans – are the only mammals known to go through menopause.

The findings show that females of these whale species that experience menopause live around 40 years longer than other female whales of a similar size.

By living longer without extending their “reproductive lifespan” (the years in which they breed), these females have more years to help their children and grandchildren, without increasing the “overlap” period when they compete with their daughters by breeding and raising calves at the same time.

This new research shows that – despite being separated by 90 million years of evolution – whales and humans show remarkably similar life histories, which have evolved independently.

The study was carried out by the universities of Exeter and York, and the Center for Whale Research.

“The process of evolution favors traits and behaviors by which an animal passes its genes to future generations,” said lead author Dr Sam Ellis, from the University of Exeter.

The integrity of the blood-brain barrier depends on a protein that is altered in some neurodegenerative diseases

From left to right, Pilar Villacampa, Víctor Arribas and Eloi Montañez.
Photo Credit: Courtesy of University of Barcelona

Defects in the blood vessel network of the central nervous system have been linked to early symptoms of neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS). It is this complex vascular network that provides the necessary nutrients, especially glucose and oxygen to activate all neuronal functions. Now, a study led by the University of Barcelona and the Bellvitge Biomedical Research Institute (IBIDELL) reveals that the TDP-43 protein is essential for forming a stable and mature blood vessel network in the central nervous system.

According to the study the TDP-43 protein is also critical in maintaining the integrity of the blood-brain barrier, which prevents toxins and pathogens from reaching the central nervous system.

The project is led by Professor Eloi Montañez, from the Faculty of Medicine and Health Sciences of the University of Barcelona and IDIBELL, and involves teams from the Faculty of Biology and the Institute of Biomedicine of the UB (IBUB), the Josep Carreras Leukemia Research Institute, and the National Centre for Genomic Analysis (CNAG-CRG).

Rethinking galactic origins through heavy-element mapping challenges conventional theory

Galactic gas shows varying heavy element distribution: blue indicates scarcity, red indicates richness. Heavy elements are less abundant in gas than Galaxy.
Image Credit: T. Hayakawa/Y.Fukui, Nagoya University

A groundbreaking study of the origins of intermediate-velocity clouds (IVCs) challenges a 20-year-old theory and suggests a new era of deep-space research. Researchers at Nagoya University in Japan discovered that IVCs have much lower heavy elements than previously reported. Rather than the materials being constantly recycled like water in a fountain, their findings suggest that the particles that make the clouds originated outside our galaxy. The group published their findings in Monthly Notices of the Royal Astronomical Society

IVCs are a type of interstellar cloud characterized by their velocity. They are found at altitudes of thousands of light years away throughout the Milky Way. Gas clouds are important because they are sources of elements that enable star formation and the creation of planetary systems. 

In the conventional model, elements are released back into the interstellar medium when the stars die in events called supernovae. This material is then reincorporated into the gas clouds. According to this model, the heavy elements in IVCs are generated through nuclear fusion reactions and supernova explosions within our galaxy. 

New research on tungsten unlocks potential for improving fusion materials

Through a combination of modeling and state-of-the-art experimental techniques, researchers shed light on the complex behavior of phonons in tungsten. This advancement could lead to the development of more efficient and resilient fusion reactor materials.
Image Credit: Courtesy of SLAC National Accelerator Laboratory

In the pursuit of clean and endless energy, nuclear fusion is a promising frontier. But in fusion reactors, where scientists attempt to make energy by fusing atoms together, mimicking the sun's power generation process, things can get extremely hot. To overcome this, researchers have been diving deep into the science of heat management, focusing on a special metal called tungsten.

New research, led by scientists at the Department of Energy’s SLAC National Accelerator Laboratory, highlights tungsten's potential to significantly improve fusion reactor technology based on new findings about its ability to conduct heat. This advancement could accelerate the development of more efficient and resilient fusion reactor materials. Their results were published today in Science Advances.

"What excites us is the potential of our findings to influence the design of artificial materials for fusion and other energy applications," said collaborator Siegfried Glenzer, director of the High Energy Density Division at SLAC. “Our work demonstrates the capability to probe materials at the atomic scale, providing valuable data for further research and development."

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles