![]() |
| Brochosomes are hollow, nanoscopic, soccer ball-shaped spheroids with through-holes that are produced by the common backyard insect, the leafhopper. Researchers found that the through-holes of these hollow buckyballs help reduce the reflection of light. This is the first biological example showing short wavelength, low-pass antireflection functionality enabled by through-holes and hollow structures. Image Credit: Lin Wang and Tak-Sing Wong / Pennsylvania State University (CC BY-NC-ND 4.0 DEED) |
Leafhoppers, a common backyard insect, secrete and coat themselves in tiny mysterious particles that could provide both the inspiration and the instructions for next-generation technology, according to a new study led by Penn State researchers. In a first, the team precisely replicated the complex geometry of these particles, called brochosomes, and elucidated a better understanding of how they absorb both visible and ultraviolet light.
This could allow the development of bioinspired optical materials with possible applications ranging from invisible cloaking devices to coatings to more efficiently harvest solar energy, said Tak-Sing Wong, professor of mechanical engineering and biomedical engineering. Wong led the study, which was published in the Proceedings of the National Academy of Sciences (PNAS).
The unique, tiny particles have an unusual soccer ball-like geometry with cavities, and their exact purpose for the insects has been something of a mystery to scientists since the 1950s. In 2017, Wong led the Penn State research team that was the first to create a basic, synthetic version of brochosomes in an effort to better understand their function.


.jpg)

.jpg)


.jpg)

